Unsupervised and self-supervised deep learning approaches for biomedical text mining

被引:42
|
作者
Nadif, Mohamed [1 ]
Role, Francois [1 ]
机构
[1] Univ Paris, CNRS, Ctr Borelli, F-75006 Paris, France
关键词
unsupervised learning; self-supervised learning; deep learning; text mining;
D O I
10.1093/bib/bbab016
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Biomedical scientific literature is growing at a very rapid pace, which makes increasingly difficult for human experts to spot the most relevant results hidden in the papers. Automatized information extraction tools based on text mining techniques are therefore needed to assist them in this task. In the last few years, deep neural networks-based techniques have significantly contributed to advance the state-of-the-art in this research area. Although the contribution to this progress made by supervised methods is relatively well-known, this is less so for other kinds of learning, namely unsupervised and self-supervised learning. Unsupervised learning is a kind of learning that does not require the cost of creating labels, which is very useful in the exploratory stages of a biomedical study where agile techniques are needed to rapidly explore many paths. In particular, clustering techniques applied to biomedical text mining allow to gather large sets of documents into more manageable groups. Deep learning techniques have allowed to produce new clustering-friendly representations of the data. On the other hand, self-supervised learning is a kind of supervised learning where the labels do not have to be manually created by humans, but are automatically derived from relations found in the input texts. In combination with innovative network architectures (e.g. transformer-based architectures), self-supervised techniques have allowed to design increasingly effective vector-based word representations (word embeddings). We show in this survey how word representations obtained in this way have proven to successfully interact with common supervised modules (e.g. classification networks) to whose performance they greatly contribute.
引用
收藏
页码:1592 / 1602
页数:11
相关论文
共 50 条
  • [21] Self-Supervised Synthesis Ranking for Deep Metric Learning
    Fu, Zheren
    Mao, Zhendong
    Yan, Chenggang
    Liu, An-An
    Xie, Hongtao
    Zhang, Yongdong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (07) : 4736 - 4750
  • [22] SELF-SUPERVISED DEEP LEARNING FOR FISHEYE IMAGE RECTIFICATION
    Chao, Chun-Hao
    Hsu, Pin-Lun
    Lee, Hung-Yi
    Wang, Yu-Chiang Frank
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 2248 - 2252
  • [23] Deep learning approaches for lyme disease detection: leveraging progressive resizing and self-supervised learning models
    Jerrish, Daryl Jacob
    Nankar, Om
    Gite, Shilpa
    Patil, Shruti
    Kotecha, Ketan
    Selvachandran, Ganeshsree
    Abraham, Ajith
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (07) : 21281 - 21318
  • [24] Automatic self-supervised learning of associations between speech and text
    Knuuttila, Juho
    Rasanen, Okko
    Laine, Unto K.
    14TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2013), VOLS 1-5, 2013, : 465 - 469
  • [25] Weather Recognition Using Self-supervised Deep Learning
    Acuna-Escobar, Diego
    Intriago-Pazmino, Monserrate
    Ibarra-Fiallo, Julio
    SMART TECHNOLOGIES, SYSTEMS AND APPLICATIONS, SMARTTECH-IC 2021, 2022, 1532 : 161 - 174
  • [26] Self-Supervised Deep Learning-The Next Frontier
    Liu, T. Y. Alvin
    Koseoglu, Neslihan Dilruba
    Jones, Craig
    JAMA OPHTHALMOLOGY, 2024, 142 (03) : 234 - 234
  • [27] A Deep Cut Into Split Federated Self-Supervised Learning
    Przewiezlikowski, Marcin
    Osial, Marcin
    Zielinski, Bartosz
    Smieja, Marek
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, PT II, ECML PKDD 2024, 2024, 14942 : 444 - 459
  • [28] Deep Bregman divergence for self-supervised representations learning
    Rezaei, Mina
    Soleymani, Farzin
    Bischl, Bernd
    Azizi, Shekoofeh
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2023, 235
  • [29] Supervised and Unsupervised Deep Learning Approaches for EEG Seizure Prediction
    Georgis-Yap, Zakary
    Popovic, Milos R.
    Khan, Shehroz S.
    JOURNAL OF HEALTHCARE INFORMATICS RESEARCH, 2024, 8 (02) : 286 - 312
  • [30] A comparative study on supervised and unsupervised learning approaches for multilingual text categorization
    Lee, Chung-Hong
    Yang, Hsin-Chang
    Chen, Ting-Chung
    Ma, Sheng-Min
    ICICIC 2006: FIRST INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING, INFORMATION AND CONTROL, VOL 2, PROCEEDINGS, 2006, : 511 - +