Unsupervised and self-supervised deep learning approaches for biomedical text mining

被引:42
|
作者
Nadif, Mohamed [1 ]
Role, Francois [1 ]
机构
[1] Univ Paris, CNRS, Ctr Borelli, F-75006 Paris, France
关键词
unsupervised learning; self-supervised learning; deep learning; text mining;
D O I
10.1093/bib/bbab016
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Biomedical scientific literature is growing at a very rapid pace, which makes increasingly difficult for human experts to spot the most relevant results hidden in the papers. Automatized information extraction tools based on text mining techniques are therefore needed to assist them in this task. In the last few years, deep neural networks-based techniques have significantly contributed to advance the state-of-the-art in this research area. Although the contribution to this progress made by supervised methods is relatively well-known, this is less so for other kinds of learning, namely unsupervised and self-supervised learning. Unsupervised learning is a kind of learning that does not require the cost of creating labels, which is very useful in the exploratory stages of a biomedical study where agile techniques are needed to rapidly explore many paths. In particular, clustering techniques applied to biomedical text mining allow to gather large sets of documents into more manageable groups. Deep learning techniques have allowed to produce new clustering-friendly representations of the data. On the other hand, self-supervised learning is a kind of supervised learning where the labels do not have to be manually created by humans, but are automatically derived from relations found in the input texts. In combination with innovative network architectures (e.g. transformer-based architectures), self-supervised techniques have allowed to design increasingly effective vector-based word representations (word embeddings). We show in this survey how word representations obtained in this way have proven to successfully interact with common supervised modules (e.g. classification networks) to whose performance they greatly contribute.
引用
收藏
页码:1592 / 1602
页数:11
相关论文
共 50 条
  • [1] Self-supervised extractive text summarization for biomedical literatures
    Xie, Tianyi
    Zhen, Yi
    Li, Tianqi
    Li, Chuqin
    Ge, Yaorong
    2021 IEEE 9TH INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI 2021), 2021, : 503 - 504
  • [2] A Self-Supervised Deep Learning Framework for Unsupervised Few-Shot Learning and Clustering
    Zhang, Hongjing
    Zhan, Tianyang
    Davidson, Ian
    PATTERN RECOGNITION LETTERS, 2021, 148 : 75 - 81
  • [3] A Self-Supervised Deep Learning Framework for Unsupervised Few-Shot Learning and Clustering
    Zhang, Hongjing
    Zhan, Tianyang
    Davidson, Ian
    Pattern Recognition Letters, 2021, 148 : 75 - 81
  • [4] Self-Supervised Contrastive Learning for Unsupervised Phoneme Segmentation
    Kreuk, Felix
    Keshet, Joseph
    Adi, Yossi
    INTERSPEECH 2020, 2020, : 3700 - 3704
  • [5] Applications of Self-Supervised Learning to Biomedical Signals: A Survey
    Del Pup, Federico
    Atzori, Manfredo
    IEEE ACCESS, 2023, 11 : 144180 - 144203
  • [6] Self-supervised Product Quantization for Deep Unsupervised Image Retrieval
    Jang, Young Kyun
    Cho, Nam Ik
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 12065 - 12074
  • [7] Deep active sampling with self-supervised learning
    Shi, Haochen
    Zhou, Hui
    FRONTIERS OF COMPUTER SCIENCE, 2023, 17 (04)
  • [8] Self-Supervised Deep Metric Learning for Pointsets
    Arsomngern, Pattaramanee
    Long, Cheng
    Suwajanakorn, Supasorn
    Nutanong, Sarana
    2021 IEEE 37TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2021), 2021, : 2171 - 2176
  • [9] Deep active sampling with self-supervised learning
    Haochen SHI
    Hui ZHOU
    Frontiers of Computer Science, 2023, 17 (04) : 215 - 217
  • [10] Deep Metric Learning with Self-Supervised Ranking
    Fu, Zheren
    Li, Yan
    Mao, Zhendong
    Wang, Quan
    Zhang, Yongdong
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 1370 - 1378