Laplace problems for regular lattices

被引:0
|
作者
Caristi, Giuseppe [1 ]
机构
[1] Univ Messina, Dept SEA, Via Verdi 75, I-98122 Messina, Italy
关键词
Geometric Probability; stochastic geometry; random sets; random convex sets and integral geometry;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let R-1 (a, b, c), R-2 (a, b, c) and R-3 (a, b, c) be three regular lattice with the fundamental cell as in fig 1, fig 8 and fig 12. We compute the probability that a random segment of constant lenght 1 intersects a side of the lattice. In particular cases we obtain the Laplace probability.
引用
收藏
页码:27 / +
页数:2
相关论文
共 50 条
  • [21] Regular Packings on Periodic Lattices
    Ras, Tadeus
    Schilling, Rolf
    Weigel, Martin
    PHYSICAL REVIEW LETTERS, 2011, 107 (21)
  • [22] Regular elements in multiplicative lattices
    Jayaram, C.
    ALGEBRA UNIVERSALIS, 2008, 59 (1-2) : 73 - 84
  • [23] GRAPHS AND SURFACES IN REGULAR LATTICES
    WHITTINGTON, SG
    SOTEROS, CE
    VANRENSBURG, EJJ
    COMPUTERS & CHEMISTRY, 1990, 14 (04): : 281 - 286
  • [24] REGULAR FILTERS OF DISTRIBUTIVE LATTICES
    Rao, M. sambasiva
    Kumar, A. p. phaneendra
    JOURNAL OF ALGEBRAIC SYSTEMS, 2025, 12 (02):
  • [25] Lattices compatible with regular polytopes
    McMullen, Peter
    EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (08) : 1925 - 1932
  • [26] CUBIC SUBCOMPLEXES IN REGULAR LATTICES
    DOLBILIN, NP
    SHTANKO, MA
    SHTOGRIN, MI
    DOKLADY AKADEMII NAUK SSSR, 1986, 291 (02): : 277 - 279
  • [27] Regular elements in multiplicative lattices
    C. Jayaram
    Algebra universalis, 2008, 59 : 73 - 84
  • [28] CONTINUUM LIMIT FOR LAPLACE AND ELLIPTIC OPERATORS ON LATTICES
    Mikami, Keita
    Nakamura, Shu
    Tadano, Yukihide
    PURE AND APPLIED ANALYSIS, 2024, 6 (03):
  • [29] Some Laplace problems
    Millot, S
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1924, 179 : 1304 - 1305
  • [30] Regular coverings in complete modular lattices
    W.H. Rowan
    algebra universalis, 1997, 37 : 77 - 80