Slip Hankel matrix series-based singular value decomposition and its application for fault feature extraction

被引:14
|
作者
Xu, Jian [1 ,2 ]
Tong, Shuiguang [2 ]
Cong, Feiyun [1 ]
Chen, Jin [3 ]
机构
[1] Zhejiang Univ, State Key Lab Fluid Power Transmiss & Control, 38 Zheda Rd, Hangzhou 310000, Zhejiang, Peoples R China
[2] Zhejiang Univ, Inst Thermal Sci & Power Engn, 38 Zheda Rd, Hangzhou 310000, Zhejiang, Peoples R China
[3] Shanghai Jiao Tong Univ, State Key Lab Mech Syst & Vibrat, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Hankel matrices; singular value decomposition; feature extraction; fault diagnosis; band-pass filters; deconvolution; rolling bearings; slip Hankel matrix series; fault feature extraction; rolling bearing fault diagnosis method; maximum singular value energy analysis; band-pass filter; minimum entropy deconvolution; redundant frequency interference; initial fault identification; MINIMUM ENTROPY DECONVOLUTION; EMPIRICAL MODE DECOMPOSITION; BLIND DECONVOLUTION; SPECTRAL KURTOSIS; VIBRATION SIGNAL; DIAGNOSIS; FILTER; BEARINGS;
D O I
10.1049/iet-smt.2016.0176
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The failure of rolling bearings is one of the most important factors for rotating machinery breakdown. The detection of initial fault in rolling bearings is crucial for the further prevention of equipment malfunction and failure. In this study, a new rolling bearing fault diagnosis method based on the singular value decomposition, slip Hankel matrix series construction and maximum singular value energy analysis is proposed. It has been validated that the proposed method has an excellent impulse recognition capacity, which can be further applied to design the optimal band-pass filter for rolling bearing fault diagnosis. Then, the minimum entropy deconvolution (MED) technique is introduced to improve the fault extraction ability of the proposed method. Simulated signals and artificial fault tests are used to prove the capacity of the new method for rolling bearing fault detection. Furthermore, the result of accelerated life test indicates the initial bearing fault can be recognised by the proposed method, while the envelope spectrum cannot directly distinguish the failure type because of the redundant frequency interference. It can be concluded that the proposed method has the effectiveness of initial fault identification and redundant frequency elimination for rolling bearing fault diagnosis.
引用
收藏
页码:464 / 472
页数:9
相关论文
共 50 条
  • [31] Singular Value Decomposition Based Feature Extraction Technique for Physiological Signal Analysis
    Chang, Cheng-Ding
    Wang, Chien-Chih
    Jiang, Bernard C.
    JOURNAL OF MEDICAL SYSTEMS, 2012, 36 (03) : 1769 - 1777
  • [32] Singular Value Decomposition Based Feature Extraction Technique for Physiological Signal Analysis
    Cheng-Ding Chang
    Chien-Chih Wang
    Bernard C. Jiang
    Journal of Medical Systems, 2012, 36 : 1769 - 1777
  • [33] Supervised feature selection via matrix factorization based on singular value decomposition
    Zare, Masoumeh
    Eftekhari, Mahdi
    Aghamollaei, Gholamreza
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2019, 185 : 105 - 113
  • [34] Informative singular value decomposition and its application in fault detection of planetary gearbox
    Shen, Zhaoyang
    Shi, Zhanqun
    Shen, Guoji
    Zhen, Dong
    Gu, Fengshou
    Ball, Andrew
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (08)
  • [35] Incipient Fault Feature Extraction of Rolling Bearing Based on Optimized Singular Spectrum Decomposition
    Chen, Zhixiang
    He, Changbo
    Liu, Yongbin
    Lu, Siliang
    Liu, Fang
    Li, Guoli
    IEEE SENSORS JOURNAL, 2021, 21 (18) : 20362 - 20374
  • [36] Research on Rolling Bearing Fault Feature Extraction Based on Singular Value Decomposition considering the Singular Component Accumulative Effect and Teager Energy Operator
    Li, Longlong
    Cui, Yahui
    Chen, Runlin
    Chen, Lingping
    Wang, Lihua
    SHOCK AND VIBRATION, 2019, 2019
  • [37] A vibration signal feature extraction method for distribution switches based on singular value decomposition of time-frequency matrix
    Gou, Moufa
    Xu, Lilan
    Miao, Xiren
    Chen, Lichun
    Gou, Moufa, 1600, Chinese Society for Electrical Engineering (34): : 4990 - 4997
  • [38] Period enhanced feature mode decomposition and its application for bearing weak fault feature extraction
    Zuo, Jinyan
    Lin, Jing
    Miao, Yonghao
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (11)
  • [39] Bearing Fault Feature Extraction Method Based on Adaptive Time-Varying Filtering Empirical Mode Decomposition and Singular Value Decomposition Denoising
    Xuezhuang, E.
    Wang, Wenbo
    Yuan, Hao
    MACHINES, 2025, 13 (01)
  • [40] On the Jacobians of singular matrix decomposition and its application
    Li, Fei
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (08): : 1521 - 1533