SHIFT-INVARIANT SUBSPACES INVARIANT FOR COMPOSITION OPERATORS ON THE HARDY-HILBERT SPACE

被引:9
|
作者
Cowen, Carl C. [1 ]
Wahl, Rebecca G. [2 ]
机构
[1] Indiana Univ Purdue Univ, Dept Math Sci, Indianapolis, IN 46202 USA
[2] Butler Univ, Dept Math, Indianapolis, IN 46208 USA
关键词
Composition operator; shift-invariant subspace;
D O I
10.1090/S0002-9939-2014-12132-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
If phi is an analytic map of the unit disk D into itself, the composition operator C-phi on a Hardy space H-2 is defined by C-phi(f) = f omicron phi. The unilateral shift on H-2 is the operator of multiplication by z. Beurling (1949) characterized the invariant subspaces for the shift. In this paper, we consider the shift-invariant subspaces that are invariant for composition operators. More specifically, necessary and sufficient conditions are provided for an atomic inner function with a single atom to be invariant for a composition operator, and the Blaschke product invariant subspaces for a composition operator are described. We show that if phi has Denjoy-Wolff point a on the unit circle, the atomic inner function subspaces with a single atom at a are invariant subspaces for the composition operator C-phi.
引用
收藏
页码:4143 / 4154
页数:12
相关论文
共 50 条
  • [31] Symmetric shift-invariant subspaces and harmonic maps
    Aleman, Alexandru
    Pacheco, Rui
    Wood, John C.
    MATHEMATISCHE ZEITSCHRIFT, 2021, 299 (1-2) : 183 - 202
  • [32] INVARIANT SUBSPACES OF COMPOSITION OPERATORS
    Matache, Valentin
    JOURNAL OF OPERATOR THEORY, 2015, 73 (01) : 243 - 264
  • [33] Invariant subspaces of composition operators
    Mahvidi, A
    JOURNAL OF OPERATOR THEORY, 2001, 46 (03) : 453 - 476
  • [34] Shift-invariant subspaces and wavelets on local fields
    Behera, B.
    ACTA MATHEMATICA HUNGARICA, 2016, 148 (01) : 157 - 173
  • [35] Generalized Shift-Invariant Systems and Frames for Subspaces
    Ole Christensen
    Yonina C. Eldar
    Journal of Fourier Analysis and Applications, 2005, 11 : 299 - 313
  • [36] Shift-invariant subspaces and wavelets on local fields
    B. Behera
    Acta Mathematica Hungarica, 2016, 148 : 157 - 173
  • [37] Symmetric shift-invariant subspaces and harmonic maps
    Alexandru Aleman
    Rui Pacheco
    John C. Wood
    Mathematische Zeitschrift, 2021, 299 : 183 - 202
  • [38] Invariance of a Shift-Invariant Space
    Aldroubi, Akram
    Cabrelli, Carlos
    Heil, Christopher
    Kornelson, Keri
    Molter, Ursula
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2010, 16 (01) : 60 - 75
  • [39] Invariance of a Shift-Invariant Space
    Akram Aldroubi
    Carlos Cabrelli
    Christopher Heil
    Keri Kornelson
    Ursula Molter
    Journal of Fourier Analysis and Applications, 2010, 16 : 60 - 75
  • [40] A new class of shift-invariant operators
    Heikkilä, J
    IEEE SIGNAL PROCESSING LETTERS, 2004, 11 (06) : 545 - 548