Physics-informed deep learning for signal compression and reconstruction of big data in industrial condition monitoring

被引:37
|
作者
Russell, Matthew [1 ]
Wang, Peng [1 ,2 ]
机构
[1] Univ Kentucky, Dept Elect & Comp Engn, Lexington, KY 40506 USA
[2] Univ Kentucky, Dept Mech Engn, Lexington, KY 40506 USA
基金
美国国家科学基金会;
关键词
Physics-informed deep learning; Prognostics and health management; Data compression; Big data; NEURAL-NETWORKS; AUTOENCODER;
D O I
10.1016/j.ymssp.2021.108709
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The onset of the Internet of Things enables machines to be outfitted with always-on sensors that can provide health information to cloud-based monitoring systems for prognostics and health management (PHM), which greatly improves reliability and avoids downtime of machines and processes on the shop floor. On the other hand, real-time monitoring produces large amounts of data, leading to significant challenges for efficient and effective data transmission (from the shop floor to the cloud) and analysis (in the cloud). Restricted by industrial hardware capability, especially Internet bandwidth, most solutions approach data transmission from the perspective of data compression (before transmission, at local computing devices) coupled with data reconstruction (after transmission, in the cloud). However, existing data compression techniques may not adapt to domain-specific characteristics of data, and hence have limitations in addressing high compression ratios where full restoration of signal details is important for revealing machine conditions. This study integrates Deep Convolutional Autoencoders (DCAE) with local structure and physics-informed loss terms that incorporate PHM domain knowledge such as the importance of frequency content for machine fault diagnosis. Furthermore, Fault Division Autoencoder Multiplexing (FDAM) is proposed to mitigate the negative effects of multiple disjoint operating conditions on reconstruction fidelity. The proposed methods are evaluated on two case studies, and autocorrelation-based noise analysis provides insight into the relative performance across machine health and operating conditions. Results indicate that physically informed DCAE compression outperforms prevalent data compression approaches, such as compressed sensing, Principal Component Analysis (PCA), Discrete Cosine Transform (DCT), and DCAE with a standard loss function. FDAM can further improve the data reconstruction quality for certain machine conditions.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] SenseNet: A Physics-Informed Deep Learning Model for Shape Sensing
    Qiu, Yitao
    Arunachala, Prajwal Kammardi
    Linder, Christian
    JOURNAL OF ENGINEERING MECHANICS, 2023, 149 (03)
  • [32] Physics-informed deep learning for one-dimensional consolidation
    Yared W.Bekele
    Journal of Rock Mechanics and Geotechnical Engineering, 2021, (02) : 420 - 430
  • [33] Physics-informed deep learning approach for modeling crustal deformation
    Okazaki, Tomohisa
    Ito, Takeo
    Hirahara, Kazuro
    Ueda, Naonori
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [34] Physics-informed Deep Learning for Flow Modelling and Aerodynamic Optimization
    Sun, Yubiao
    Sengupta, Ushnish
    Juniper, Matthew
    2022 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2022, : 1149 - 1155
  • [35] Physics-informed deep generative learning for quantitative assessment of the retina
    Brown, Emmeline E.
    Guy, Andrew A.
    Holroyd, Natalie A.
    Sweeney, Paul W.
    Gourmet, Lucie
    Coleman, Hannah
    Walsh, Claire
    Markaki, Athina E.
    Shipley, Rebecca
    Rajendram, Ranjan
    Walker-Samuel, Simon
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [36] Towards physics-informed deep learning for turbulent flow prediction
    Wang, Rui
    Kashinath, Karthik
    Mustafa, Mustafa
    Albert, Adrian
    Yu, Rose
    KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 1457 - 1466
  • [37] A Framework for Physics-Informed Deep Learning Over Freeform Domains
    Mezzadri, Francesco
    Gasick, Joshua
    Qian, Xiaoping
    COMPUTER-AIDED DESIGN, 2023, 160
  • [38] Physics-informed deep learning approach for modeling crustal deformation
    Tomohisa Okazaki
    Takeo Ito
    Kazuro Hirahara
    Naonori Ueda
    Nature Communications, 13
  • [39] A physics-informed deep learning approach for bearing fault detection
    Shen, Sheng
    Lu, Hao
    Sadoughi, Mohammadkazem
    Hu, Chao
    Nemani, Venkat
    Thelen, Adam
    Webster, Keith
    Darr, Matthew
    Sidon, Jeff
    Kenny, Shawn
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2021, 103
  • [40] Physics-informed deep learning for one-dimensional consolidation
    Bekele, Yared W.
    JOURNAL OF ROCK MECHANICS AND GEOTECHNICAL ENGINEERING, 2021, 13 (02) : 420 - 430