Quantization of global gene expression data

被引:0
|
作者
Chung, Tae-Hoon [1 ]
Brun, Marcel [1 ]
Kim, Seungchan [1 ,2 ]
机构
[1] Translat Genom Res Inst, Computat Biol Div, 445 N 5th St, Phoenix, AZ 85004 USA
[2] Arizona State Univ, Sch Engn, Dept Comp Sci & Engn, Tempe, AZ 85287 USA
来源
ICMLA 2006: 5TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, PROCEEDINGS | 2006年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many researchers are investigating the possibility of utilizing global gene expression profile data as a platform to infer gene regulatory networks. However, heavy computational burden and measurement noises render these efforts difficult and approaches based on quantized levels are vigorously investigated as an alternative. Methods based on quantized values require a procedure to convert continuous expression values into discrete ones. Although there have been algorithms to quantize values into multiple discrete states, these algorithms assumed strict state mixtures (SSM) so that all expression profiles were divided into pre-specified number of states. We propose two novel quantization algorithms (QAs); model-based quantization algorithm and model-free quantization algorithm, that generalize SSM algorithms in two major aspects. First, our QAs assume the maximum number of expression states (E-s) be arbitrary. Second, expression profiles can exhibit any combinations of E-s possible states. In this paper, we compare the performances between SSM algorithms and QAs using simulation studies as well as applications to actual data and show that quantizing gene expression data using adaptive algorithms is an effective way to reduce data complexity without sacrificing much of essential information.
引用
收藏
页码:187 / +
页数:2
相关论文
共 50 条
  • [21] Global analysis of gene expression in yeast
    Horak C.E.
    Snyder M.
    Functional & Integrative Genomics, 2002, 2 (4-5) : 171 - 180
  • [22] A global map of human gene expression
    Lukk, Margus
    Kapushesky, Misha
    Nikkila, Janne
    Parkinson, Helen
    Goncalves, Angela
    Huber, Wolfgang
    Ukkonen, Esko
    Brazma, Alvis
    NATURE BIOTECHNOLOGY, 2010, 28 (04) : 322 - 324
  • [23] MAPPFinder: using Gene Ontology and GenMAPP to create a global gene-expression profile from microarray data
    Doniger, SW
    Salomonis, N
    Dahlquist, KD
    Vranizan, K
    Lawlor, SC
    Conklin, BR
    GENOME BIOLOGY, 2003, 4 (01)
  • [24] Revisiting Global Gene Expression Analysis
    Loven, Jakob
    Orlando, David A.
    Sigova, Alla A.
    Lin, Charles Y.
    Rahl, Peter B.
    Burge, Christopher B.
    Levens, David L.
    Lee, Tong Ihn
    Young, Richard A.
    CELL, 2012, 151 (03) : 476 - 482
  • [25] Global functional profiling of gene expression
    Draghici, S
    Khatri, P
    Martins, RP
    Ostermeier, GC
    Krawetz, SA
    GENOMICS, 2003, 81 (02) : 98 - 104
  • [26] Global analysis of neutrophil gene expression
    Newburger, PE
    Subrahmanyam, YVBK
    Weissman, SM
    CURRENT OPINION IN HEMATOLOGY, 2000, 7 (01) : 16 - 20
  • [27] A global map of human gene expression
    Margus Lukk
    Misha Kapushesky
    Janne Nikkilä
    Helen Parkinson
    Angela Goncalves
    Wolfgang Huber
    Esko Ukkonen
    Alvis Brazma
    Nature Biotechnology, 2010, 28 : 322 - 324
  • [28] Global gene expression patterns in rice
    Philippe Reymond
    Genome Biology, 1 (1)
  • [29] MAPPFinder: using Gene Ontology and GenMAPP to create a global gene-expression profile from microarray data
    Scott W Doniger
    Nathan Salomonis
    Kam D Dahlquist
    Karen Vranizan
    Steven C Lawlor
    Bruce R Conklin
    Genome Biology, 4
  • [30] GLOBAL REDSHIFT QUANTIZATION
    TIFFT, WG
    COCKE, WJ
    ASTROPHYSICAL JOURNAL, 1984, 287 (02): : 492 - 502