Irisin mediates beiging of adipose-derived mesenchymal stem cells through binding to TRPC3

被引:6
|
作者
Xue, Chunling [1 ]
Li, Xuechun [1 ]
Ba, Li [1 ]
Shen, Yamei [1 ]
Sun, Zhao [2 ]
Gu, Junjie [2 ]
Yang, Ying [2 ]
Han, Qin [1 ]
Zhao, Robert Chunhua [1 ]
机构
[1] Chinese Acad Med Sci, Ctr Excellence Tissue Engn, Peking Union Med Coll Hosp,Beijing Key Lab BZ0381, Peking Union Med Coll,Inst Basic Med Sci,Sch Basi, Beijing, Peoples R China
[2] Chinese Acad Med Sci & Peking Union Med Coll, Peking Union Med Coll Hosp, Dept Oncol, 1 Shuaifuyuan Hutong, Beijing 100730, Peoples R China
基金
中国国家自然科学基金;
关键词
Mesenchymal stem cells; Beiging; IRISIN; TRPC3; Calcium influx; Energy metabolism; WHITE FAT; ADIPOCYTE DIFFERENTIATION; STROMAL CELLS; CHANNELS; BROWN; TISSUE; MUSCLE; OBESITY; BONE; ASSOCIATION;
D O I
10.1186/s12915-022-01287-2
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Beiging of white fat plays an important role in energy metabolism. Beige adipocytes contribute to the regulation of body weight and body temperature through expenditure of chemical energy to produce heat, and they have therefore recently attracted considerable attention as potential targets for therapeutic approaches in metabolic disorders, including obesity. All adipocytes, including beige adipocytes, differentiate from mesenchymal stem cells (MSCs), which may provide an important path for clinical intervention; however, the mechanism of beiging of human adipose cell-derived MSCs is not fully understood. Here, we provide insights on the role of IRISIN, which is known to be secreted by skeletal muscle and promote beiging of white fat. Results: We established an IRISIN-induced mesenchymal stem cell beiging model and found that IRISIN protein interacts with the MSC membrane protein TRPC3. This interaction results in calcium influx and consequential activation of Erk and Akt signaling pathways, which causes phosphorylation of PPAR gamma. The phosphorylated PPAR gamma enters the nucleus and binds the UCP1 promoter region. Furthermore, the role of TRPC3 in the beiging of MSCs was largely abolished in Trpc3(-/-) mice. We additionally demonstrate that the calcium concentration in the brain of mice increases upon IRISIN stimulation, followed by an increase in the content of excitatory amino acids and norepinephrine, while Trpc3(-/-) mice exhibit the reverse effect. Conclusions: We found that TRPC3 is a key factor in irisin-induced beiging of MSCs, which may provide a new target pathway in addressing metabolic disorders. Our results additionally suggest that the interaction of irisin with TRPC3 may affect multiple tissues, including the brain.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Perifistular application of adipose-derived mesenchymal stem cells - experimental study
    Ryska, O.
    Serclova, Z.
    Mestak, O.
    Matouskova, E.
    Vesely, P.
    Mrazova, I.
    Luksan, O.
    JOURNAL OF CROHNS & COLITIS, 2014, 8 : S227 - S227
  • [32] Adipose-derived mesenchymal stem cells and biomaterials for cartilage tissue engineering
    Merceron, Christophe
    Vinatier, Claire
    Clouet, Johann
    Colliec-Jouault, Sylvia
    Weiss, Pierre
    Guicheux, Jerome
    JOINT BONE SPINE, 2008, 75 (06) : 672 - 674
  • [33] Features of Induction of In Vitro Osteodifferentiation of Adipose-Derived Mesenchymal Stem Cells
    Aleksandrova, N. M.
    Aimaletdinov, A. M.
    Malanyeva, A. G.
    Tambovskii, M. A.
    Rizvanov, A. A.
    Zakirova, E. Yu.
    APPLIED BIOCHEMISTRY AND MICROBIOLOGY, 2023, 59 (08) : 1071 - 1077
  • [34] Assessment of Experimental Models for Obtaining Adipose-Derived Mesenchymal Stem Cells
    D'Urso Panerari, Angelo Cesar
    Oliveira, Isis Sousa
    Favero, Giovani Marino
    de Olival Costa, Henrique Olavo
    BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY, 2020, 63
  • [35] The Effect of Ischemia on Adipose-Derived Mesenchymal Stem Cells Expression In Vivo
    Almerey, Tariq
    Sheikh-ali, Ruba
    Farres, Houssam
    Hakaim, Albert G.
    JOURNAL OF VASCULAR SURGERY, 2018, 67 (06) : E237 - E238
  • [36] Subcutaneous and Visceral Adipose-Derived Mesenchymal Stem Cells: Commonality and Diversity
    Ritter, Andreas
    Friemel, Alexandra
    Roth, Susanne
    Kreis, Nina-Naomi
    Hoock, Samira Catharina
    Safdar, Babek Khan
    Fischer, Kyra
    Moellmann, Charlotte
    Solbach, Christine
    Louwen, Frank
    Yuan, Juping
    CELLS, 2019, 8 (10)
  • [37] Priming Adipose-derived Mesenchymal Stem Cells To Improve The Reepithelialization Of Wounds
    Hodge, Jacob G.
    WOUND REPAIR AND REGENERATION, 2021, 29 (03) : A45 - A45
  • [38] Biological effects of melatonin on human adipose-derived mesenchymal stem cells
    Heo, June Seok
    Pyo, Sangshin
    Lim, Ja-Yun
    Yoon, Dae Wui
    Kim, Bo Yong
    Kim, Jin-Hee
    Kim, Gi Jin
    Lee, Seung Gwan
    Kim, Jinkwan
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE, 2019, 44 (06) : 2234 - 2244
  • [39] Human Adipose-Derived Mesenchymal Stem Cells Promote Liver Regeneration
    Saidi, Reza
    Rajeshkumar, R.
    Shariftabrizi, A.
    Zimmerman, A.
    Walter, O.
    JOURNAL OF INVESTIGATIVE SURGERY, 2015, 28 (06) : 303 - 308
  • [40] OXIDATIVE STRESS RESPONSE IN ADIPOSE-DERIVED MESENCHYMAL STEM/STROMAL CELLS
    Waheed, Tawakalitu Okikiola
    Hahn, Olga
    Sridharan, Kaarthik
    Moerke, Caroline
    Gehm, Nina
    Peters, Kirsten
    TISSUE ENGINEERING PART A, 2023, 29 (11-12) : 1363 - 1364