Convergence of the binomial tree method for Asian options in jump-diffusion models

被引:4
|
作者
Kim, Kwang Ik
Qian, Xiao-song [1 ]
机构
[1] Yangzhou Univ, Sch Math Sci, Yangzhou 225002, Peoples R China
[2] Pohang Univ Sci & Technol, Dept Math, Pohang 790784, South Korea
关键词
binomial tree method; Asian option; jump-diffusion model; viscosity solution;
D O I
10.1016/j.jmaa.2006.07.042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The binomial tree methods (BTM), first proposed by Cox, Ross and Rubinstein [J. Cox, S. Ross, M. Rubinstein, Option pricing: A simplified approach, J. Finan. Econ. 7 (1979) 229-264] in diffusion models and extended by Amin [K.I. Amin, Jump diffusion option valuation in discrete time, J. Finance 48 (1993) 18331863] to jump-diffusion models, is one of the most popular approaches to pricing options. In this paper, we present a binomial tree method for Asian options in jump-diffusion models and show its equivalence to certain explicit difference scheme. Employing numerical analysis and the notion of viscosity solution, we prove the uniform convergence of the binomial tree method for European-style and American-style Asian options. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:10 / 23
页数:14
相关论文
共 50 条
  • [1] Convergence of the binomial tree method for American options in a jump-diffusion model
    Qian, XS
    Xu, CL
    Jiang, LS
    Bian, BJ
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 42 (05) : 1899 - 1913
  • [2] Asian options pricing in Hawkes-type jump-diffusion models
    Brignone, Riccardo
    Sgarra, Carlo
    ANNALS OF FINANCE, 2020, 16 (01) : 101 - 119
  • [3] Asian options pricing in Hawkes-type jump-diffusion models
    Riccardo Brignone
    Carlo Sgarra
    Annals of Finance, 2020, 16 : 101 - 119
  • [4] AMERICAN OPTIONS AND JUMP-DIFFUSION MODELS
    ZHANG, XL
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 317 (09): : 857 - 862
  • [5] A mathematical modeling for the lookback option with jump-diffusion using binomial tree method
    Kim, Kwang Ik
    Park, Hyun Suk
    Qian, Xiao-song
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (17) : 5140 - 5154
  • [6] Analytical Valuation of Asian Options with Continuously Paying Dividends in Jump-Diffusion Models
    Lin, Hsien-Jen
    JOURNAL OF APPLIED SCIENCE AND ENGINEERING, 2013, 16 (02): : 197 - 204
  • [7] Asymptotics for short maturity Asian options in jump-diffusion models with local volatility
    Pirjol, Dan
    Zhu, Lingjiong
    QUANTITATIVE FINANCE, 2024, 24 (3-4) : 433 - 449
  • [8] Pricing Cliquet options in jump-diffusion models
    Yan, HF
    Yang, JQ
    Liu, LM
    STOCHASTIC MODELS, 2005, 21 (04) : 875 - 884
  • [9] Numerical analysis on binomial tree methods for a jump-diffusion model
    Xu, CL
    Qian, XS
    Jiang, LS
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 156 (01) : 23 - 45
  • [10] An iterative method for pricing American options under jump-diffusion models
    Salmi, Santtu
    Toivanen, Jari
    APPLIED NUMERICAL MATHEMATICS, 2011, 61 (07) : 821 - 831