Convergence of the binomial tree method for Asian options in jump-diffusion models

被引:4
|
作者
Kim, Kwang Ik
Qian, Xiao-song [1 ]
机构
[1] Yangzhou Univ, Sch Math Sci, Yangzhou 225002, Peoples R China
[2] Pohang Univ Sci & Technol, Dept Math, Pohang 790784, South Korea
关键词
binomial tree method; Asian option; jump-diffusion model; viscosity solution;
D O I
10.1016/j.jmaa.2006.07.042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The binomial tree methods (BTM), first proposed by Cox, Ross and Rubinstein [J. Cox, S. Ross, M. Rubinstein, Option pricing: A simplified approach, J. Finan. Econ. 7 (1979) 229-264] in diffusion models and extended by Amin [K.I. Amin, Jump diffusion option valuation in discrete time, J. Finance 48 (1993) 18331863] to jump-diffusion models, is one of the most popular approaches to pricing options. In this paper, we present a binomial tree method for Asian options in jump-diffusion models and show its equivalence to certain explicit difference scheme. Employing numerical analysis and the notion of viscosity solution, we prove the uniform convergence of the binomial tree method for European-style and American-style Asian options. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:10 / 23
页数:14
相关论文
共 50 条