Arrhythmia;
Convolution neural network;
ECG;
Very deep learning;
Multi-canonical correlation analysis;
Multi-support vector machine;
AUTOMATED IDENTIFICATION;
ECG SIGNAL;
D O I:
10.1007/s00521-018-3616-9
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
The electrocardiogram (ECG) is a picture of heart electrical conduction, which is widely used to diagnose many types of diseases such as abnormal heartbeat rhythm (arrhythmia). However, it is very difficult to detect the abnormal ECG characteristics because of the nonlinearity and the complexity of ECG signals from one side, and the noise effect of these signals from the other side, which make it very difficult to perform direct information extraction. Therefore, in this study we propose a very deep convolutional neural network (VDCNN) by using small filters throughout the whole net to reduce the noise affect and improve the performance. Our approach introduces multi-canonical correlation analysis (MCCA), a method to learn selective adaptive layer's features such that the resulting representations are highly linearly correlated and speed up the training task. Moreover, the Q-Gaussian multi-class support vector machine (QG-MSVM) is introduced for classification, an algorithm which has a better learning performance and generalization ability on ECG signals processing. As a result, we come up with expressively more accurate architecture which is able to differentiate between the normal (NSR) heartbeats and three common types of arrhythmia atrial fibrillation (A-Fib), atrial flutter (AFL), and paroxysmal supraventricular tachycardia (PSVT) without performing any noise filtering or pre-processing techniques. Experimental results show that the proposed algorithm outperforms the state-of-the-art methods.
机构:
Birmingham City Univ, Sch Comp & Digital Technol, Birmingham, EnglandBirmingham City Univ, Sch Comp & Digital Technol, Birmingham, England
Ayantayo, Abiodun
Kaur, Amrit
论文数: 0引用数: 0
h-index: 0
机构:
Birmingham City Univ, Sch Comp & Digital Technol, Birmingham, EnglandBirmingham City Univ, Sch Comp & Digital Technol, Birmingham, England
Kaur, Amrit
Kour, Anit
论文数: 0引用数: 0
h-index: 0
机构:
Birmingham City Univ, Sch Comp & Digital Technol, Birmingham, EnglandBirmingham City Univ, Sch Comp & Digital Technol, Birmingham, England
Kour, Anit
Schmoor, Xavier
论文数: 0引用数: 0
h-index: 0
机构:
Birmingham City Univ, Sch Comp & Digital Technol, Birmingham, England
METCLOUD LTD, Birmingham, EnglandBirmingham City Univ, Sch Comp & Digital Technol, Birmingham, England
Schmoor, Xavier
Shah, Fayyaz
论文数: 0引用数: 0
h-index: 0
机构:
METCLOUD LTD, Birmingham, EnglandBirmingham City Univ, Sch Comp & Digital Technol, Birmingham, England
Shah, Fayyaz
Vickers, Ian
论文数: 0引用数: 0
h-index: 0
机构:
METCLOUD LTD, Birmingham, EnglandBirmingham City Univ, Sch Comp & Digital Technol, Birmingham, England
Vickers, Ian
Kearney, Paul
论文数: 0引用数: 0
h-index: 0
机构:
Birmingham City Univ, Sch Comp & Digital Technol, Birmingham, EnglandBirmingham City Univ, Sch Comp & Digital Technol, Birmingham, England
Kearney, Paul
Abdelsamea, Mohammed M.
论文数: 0引用数: 0
h-index: 0
机构:
Assiut Univ, Fac Comp & Informat, Assiut, Egypt
Univ Exeter, Dept Comp Sci, Exeter, EnglandBirmingham City Univ, Sch Comp & Digital Technol, Birmingham, England
机构:
Cent China Normal Univ, Dept Digital Media Technol, Luoyu Rd 152, Wuhan 430079, Peoples R ChinaCent China Normal Univ, Dept Digital Media Technol, Luoyu Rd 152, Wuhan 430079, Peoples R China
Wang, Zhifeng
Yang, Yao
论文数: 0引用数: 0
h-index: 0
机构:
Hubei Univ Technol, Hubei Key Lab High Efficiency Utilizat Solar Ener, Nanli Rd 28, Wuhan 430068, Peoples R ChinaCent China Normal Univ, Dept Digital Media Technol, Luoyu Rd 152, Wuhan 430079, Peoples R China
Yang, Yao
Zeng, Chunyan
论文数: 0引用数: 0
h-index: 0
机构:
Hubei Univ Technol, Hubei Key Lab High Efficiency Utilizat Solar Ener, Nanli Rd 28, Wuhan 430068, Peoples R ChinaCent China Normal Univ, Dept Digital Media Technol, Luoyu Rd 152, Wuhan 430079, Peoples R China
Zeng, Chunyan
Kong, Shuai
论文数: 0引用数: 0
h-index: 0
机构:
Hubei Univ Technol, Hubei Key Lab High Efficiency Utilizat Solar Ener, Nanli Rd 28, Wuhan 430068, Peoples R ChinaCent China Normal Univ, Dept Digital Media Technol, Luoyu Rd 152, Wuhan 430079, Peoples R China
Kong, Shuai
Feng, Shixiong
论文数: 0引用数: 0
h-index: 0
机构:
Hubei Univ Technol, Hubei Key Lab High Efficiency Utilizat Solar Ener, Nanli Rd 28, Wuhan 430068, Peoples R ChinaCent China Normal Univ, Dept Digital Media Technol, Luoyu Rd 152, Wuhan 430079, Peoples R China
Feng, Shixiong
Zhao, Nan
论文数: 0引用数: 0
h-index: 0
机构:
Hubei Univ Technol, Hubei Key Lab High Efficiency Utilizat Solar Ener, Nanli Rd 28, Wuhan 430068, Peoples R ChinaCent China Normal Univ, Dept Digital Media Technol, Luoyu Rd 152, Wuhan 430079, Peoples R China
机构:
Chongqing Univ, State Key Lab Mech Transmiss, Chongqing 400000, Peoples R ChinaChongqing Univ, State Key Lab Mech Transmiss, Chongqing 400000, Peoples R China
Li, Yufeng
Wang, Xingquan
论文数: 0引用数: 0
h-index: 0
机构:
Chongqing Univ, State Key Lab Mech Transmiss, Chongqing 400000, Peoples R ChinaChongqing Univ, State Key Lab Mech Transmiss, Chongqing 400000, Peoples R China
Wang, Xingquan
He, Yan
论文数: 0引用数: 0
h-index: 0
机构:
Chongqing Univ, State Key Lab Mech Transmiss, Chongqing 400000, Peoples R ChinaChongqing Univ, State Key Lab Mech Transmiss, Chongqing 400000, Peoples R China
He, Yan
Wang, Yulin
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ Sci & Technol, Sch Mech Engn, Nanjing 210094, Peoples R ChinaChongqing Univ, State Key Lab Mech Transmiss, Chongqing 400000, Peoples R China
Wang, Yulin
Wang, Yan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Brighton, Sch Comp Engn & Math, Brighton BN2 4GJ, E Sussex, EnglandChongqing Univ, State Key Lab Mech Transmiss, Chongqing 400000, Peoples R China
Wang, Yan
Wang, Shilong
论文数: 0引用数: 0
h-index: 0
机构:
Chongqing Univ, State Key Lab Mech Transmiss, Chongqing 400000, Peoples R ChinaChongqing Univ, State Key Lab Mech Transmiss, Chongqing 400000, Peoples R China
机构:
Saudi Author Data & Artificial Intelligence, Riyadh 12571, Saudi ArabiaShaheed Zulfikar Ali Bhutto Inst Informat Technol, Dept Comp Sci, Islamabad 44000, Pakistan