Full lattice convergence on Riesz spaces

被引:16
|
作者
Aydin, Abdullah [1 ]
Emelyanov, Eduard [2 ,3 ]
Gorokhova, Svetlana [4 ]
机构
[1] Mus Alparslan Univ, Dept Math, TR-49250 Mus, Turkey
[2] Middle East Tech Univ, Dept Math, TR-06800 Ankara, Turkey
[3] Sobolev Inst Math, Novosibirsk 630090, Russia
[4] Russian Acad Sci, Southern Math Inst, Vladikavkaz 362027, Russia
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2021年 / 32卷 / 03期
关键词
Riesz space; f-algebra; Full convergence; Lattice convergence; Unbounded c-convergence; Multiplicative c-convergence; UO-CONVERGENCE; VALUED MODELS; F-ALGEBRAS;
D O I
10.1016/j.indag.2021.01.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The full lattice convergence on a locally solid Riesz space is an abstraction of the topological, order, and relatively uniform convergences. We investigate four modifications of a full convergence c on a Riesz space. The first one produces a sequential convergence sc. The second makes an absolute c-convergence and generalizes the absolute weak convergence. The third modification makes an unbounded c-convergence and generalizes various unbounded convergences recently studied in the literature. The last one is applicable whenever c is a full convergence on a commutative l-algebra and produces the multiplicative modification mc of c. We study general properties of full lattice convergence with emphasis on universally complete Riesz spaces and on Archimedean f -algebras. The technique and results in this paper unify and extend those which were developed and obtained in recent literature on unbounded convergences. (c) 2021 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:658 / 690
页数:33
相关论文
共 50 条
  • [21] CONVERGENCE AND DUALITY IN TOPOLOGICAL RIESZ SPACES .1.
    DUHOUX, M
    ANNALES DE LA SOCIETE SCIENTIFIQUE DE BRUXELLES SERIES 1-SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1971, 85 (02): : 125 - &
  • [22] The Unbounded Fuzzy Order Convergence in Fuzzy Riesz Spaces
    Iqbal, Mobashir
    Malik, M. G. Abbas
    Bashir, Yasir
    Bashir, Zia
    SYMMETRY-BASEL, 2019, 11 (08):
  • [23] CONVERGENCE APPROACH SPACES AND APPROACH SPACES AS LATTICE-VALUED CONVERGENCE SPACES
    Jaeger, G.
    IRANIAN JOURNAL OF FUZZY SYSTEMS, 2012, 9 (04): : 1 - 16
  • [24] Statistical convergence of nets on locally solid Riesz spaces
    Temizsu, Fatih
    Aydin, Abdullah
    JOURNAL OF ANALYSIS, 2022, 30 (02): : 845 - 857
  • [25] ON SEVERAL TYPES OF CONVERGENCE AND DIVERGENCE IN ARCHIMEDEAN RIESZ SPACES
    ZAHAROPOL, R
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 169 (02) : 453 - 475
  • [26] Expanding Lattice Ordered Abelian Groups to Riesz Spaces
    Di Nola, Antonio
    Lenzi, Giacomo
    Vitale, Gaetano
    MATHEMATICA SLOVACA, 2022, 72 (01) : 1 - 10
  • [27] THE RIESZ CONVERGENCE PROPERTY ON WEIGHTED LORENTZ SPACES AND ORLICZ-LORENTZ SPACES
    Li, Hongliang
    QUAESTIONES MATHEMATICAE, 2013, 36 (02) : 181 - 196
  • [28] Weighted Lacunary Statistical Convergence in Locally Solid Riesz Spaces
    Basarir, Metin
    Konca, Sukran
    FILOMAT, 2014, 28 (10) : 2059 - 2067
  • [29] On the Ideal Convergence of Double Sequences in Locally Solid Riesz Spaces
    Alotaibi, A.
    Hazarika, B.
    Mohiuddine, S. A.
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [30] Rough weighted statistical convergence on locally solid Riesz spaces
    Ghosal, Sanjoy
    Banerjee, Mandobi
    POSITIVITY, 2021, 25 (05) : 1789 - 1804