Persistent current by a static non-Hermitian ratchet

被引:3
|
作者
Lyu, Guitao [1 ,2 ]
Watanabe, Gentaro [1 ,2 ,3 ]
机构
[1] Zhejiang Univ, Dept Phys, Hangzhou 310027, Zhejiang, Peoples R China
[2] Zhejiang Univ, Zhejiang Inst Modern Phys, Hangzhou 310027, Zhejiang, Peoples R China
[3] Zhejiang Univ, Zhejiang Prov Kev Lab Quantum Technol & Device, Hangzhou 310027, Zhejiang, Peoples R China
关键词
POLARITON; TRANSPORT; ATOMS;
D O I
10.1103/PhysRevA.105.023328
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose a scheme to generate a persistent current in driven-dissipative systems which can be described by the generalized Gross-Pitaevskii (GP) equation. Our proposal consists of fabricating a rachet-potential shape of the loss-rate profile, which simultaneously breaks the time-reversal symmetry and the parity-inversion symmetry. Unlike existing schemes to generate a current using a rachet potential in Hermitian systems, no dynamic drive is needed. The basic physics of our scheme is discussed by a simple discrete driven-dissipative GP model, and the results are also verified by a realistic continuous model. Furthermore, we demonstrate the experimental feasibility of our scheme to generate the persistent current in exciton-polariton condensates in a semiconductor microcavity.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] The dawn of non-Hermitian optics
    Ramy El-Ganainy
    Mercedeh Khajavikhan
    Demetrios N. Christodoulides
    Sahin K. Ozdemir
    Communications Physics, 2
  • [22] Non-Hermitian Anderson Transport
    Weidemann, Sebastian
    Kremer, Mark
    Longhi, Stefano
    Szameit, Alexander
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,
  • [23] A non-Hermitian circular billiard
    Patkar, Saket P.
    Jain, Sudhir R.
    PHYSICS LETTERS A, 2010, 374 (34) : 3396 - 3399
  • [24] Monopoles in non-Hermitian systems
    Zhang, Qi
    Wu, Biao
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (06)
  • [25] Non-Hermitian landscape of autoionization
    Mouloudakis, G.
    Lambropoulos, P.
    PHYSICAL REVIEW A, 2023, 108 (06)
  • [26] Non-Hermitian masking machine
    Metwally, N.
    Eid, A.
    EUROPEAN PHYSICAL JOURNAL D, 2024, 78 (06):
  • [27] NON-HERMITIAN YUKAWA COUPLINGS
    BRANCO, GC
    SILVAMARCOS, JI
    PHYSICS LETTERS B, 1994, 331 (3-4) : 390 - 394
  • [28] Non-hermitian integrable models
    Bogolyubov N.M.
    Journal of Mathematical Sciences, 2001, 104 (3) : 1097 - 1104
  • [29] Non-Hermitian superintegrable systems
    Correa, Francisco
    Inzunza, Luis
    Marquette, Ian
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (34)
  • [30] Non-Hermitian topological magnonics
    Yu, Tao
    Zou, Ji
    Zeng, Bowen
    Rao, J. W.
    Xia, Ke
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2024, 1062 : 1 - 86