Design of Class in Unknown Object Segmentation Focusing on 3D Object Detection in Depth Image

被引:1
|
作者
Amemiya, Tatsuya [1 ]
Tasaki, Tsuyoshi [1 ]
机构
[1] Meiji Univ, Fac Sci & Technol, Elect & Elect Engn, Tokyo, Japan
关键词
D O I
10.1109/IEEECONF49454.2021.9382606
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We aim to improve unknown object detection. We also deal with problem of designing the optimal class for semantic segmentation using depth image. There was a problem that unknown classes of obstacles were mistaken for road in semantic segmentation using depth image. Therefore, we focus on the superiority of 3D object detection in a depth image. The depth image is good at separating between horizontal plane and 3D objects. For this reason, we develop a method for changing the number of training classes from baseline 12 classes to new 3 classes (void, plane, 3D object) for segmentation, which are optimal to detect unknown object by using depth images. As a result, IoU of unknown obstacle improve +6.9point than baseline method.
引用
收藏
页码:706 / 707
页数:2
相关论文
共 50 条
  • [41] Image attention transformer network for indoor 3D object detection
    Ren, Keyan
    Yan, Tong
    Hu, Zhaoxin
    Han, Honggui
    Zhang, Yunlu
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2024, 67 (07) : 2176 - 2190
  • [42] Image attention transformer network for indoor 3D object detection
    REN KeYan
    YAN Tong
    HU ZhaoXin
    HAN HongGui
    ZHANG YunLu
    Science China(Technological Sciences), 2024, (07) : 2176 - 2190
  • [43] Image attention transformer network for indoor 3D object detection
    REN KeYan
    YAN Tong
    HU ZhaoXin
    HAN HongGui
    ZHANG YunLu
    Science China(Technological Sciences), 2024, 67 (07) : 2176 - 2190
  • [44] Exploring Depth Information for Object Segmentation and Detection
    Liu, Tyng-Luh
    Chang, Kai-Yueh
    Lai, Shang-Hong
    2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 4340 - 4345
  • [45] PointPainting: 3D Object Detection Aided by Semantic Image Information
    Gao, Zhentong
    Wang, Qiantong
    Pan, Zongxu
    Zhai, Zhenyu
    Long, Hui
    SENSORS, 2023, 23 (05)
  • [46] Learning Depth-Guided Convolutions for Monocular 3D Object Detection
    Ng, Mingyu
    Huo, Yuqi
    Yi, Hongwei
    Wang, Zhe
    Shi, Jianping
    Lu, Zhiwu
    Luo, Ping
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, : 4306 - 4315
  • [47] Monocular 3D object detection with thermodynamic loss and decoupled instance depth
    Liu, Gang
    Xie, Xiaoxiao
    Yu, Qingchen
    CONNECTION SCIENCE, 2024, 36 (01)
  • [48] MonoDTR: Monocular 3D Object Detection with Depth-Aware Transformer
    Huang, Kuan-Chih
    Wu, Tsung-Han
    Su, Hung-Ting
    Hsu, Winston H.
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 4002 - 4011
  • [49] MonoDFNet: Monocular 3D Object Detection with Depth Fusion and Adaptive Optimization
    Gao, Yuhan
    Wang, Peng
    Li, Xiaoyan
    Sun, Mengyu
    Di, Ruohai
    Li, Liangliang
    Hong, Wei
    SENSORS, 2025, 25 (03)
  • [50] Exploiting Ground Depth Estimation for Mobile Monocular 3D Object Detection
    Zhou, Yunsong
    Liu, Quan
    Zhu, Hongzi
    Li, Yunzhe
    Chang, Shan
    Guo, Minyi
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2025, 47 (04) : 3079 - 3093