Heat Transfer Fluids for Parabolic Trough Solar Collectors - A Comparative Study

被引:0
|
作者
Buehler, Reuben
Yang, Sam [1 ]
Ordonez, Juan C.
机构
[1] Florida State Univ, Dept Mech Engn, Energy & Sustainabil Ctr, Tallahassee, FL 32310 USA
基金
美国国家科学基金会;
关键词
Heat transfer fluid; Parabolic trough solar collector; Parabolic trough collector model; Solar energy; CORRELATING EQUATIONS; OPTICAL-PERFORMANCE; OPTIMIZATION; SIMULATION; CONVECTION; COATINGS;
D O I
暂无
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this work we compared three heat transfer fluids (HTFs) for parabolic trough solar collectors (PTCs), namely, Syltherm 800, Therminol VP-1, and Dowtherm Q. For the assessment, we adopted and simplified a previously developed mathematical model of a parabolic trough solar receiver comprising an outer cover, annular space, abosrber, and heat transfer fluid, and discretized the governing equations using the finite difference method. Subsequently, we validated the model with the experimental data available in the literature and employed it to study the following: (1) the effects of annular pressure on the collector performance for the three HTFs and (2) collector performance subject to different concentration ratios (i.e., aperture area) and inlet HTF temperatures. Simulation results demonstrate the meager thermal performance of Syltherm 800 compared to Therminol VP-1 and Dowtherm Q that achieve similar performance. In addition, we show that there is an optimal aperture area and inlet fluid temperature for Syltherm 800 that yield maximum collector efficiency. Henceforth, we anticipate this work to provide a rough guideline on the selection of an appropriate HTF for future PTCs from the thermal standpoint.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] A comprehensive review of different heat transfer working fluids for solar thermal parabolic trough concentrator
    Malviya, Rajkumar
    Agrawal, Ayush
    Baredar, Prashant, V
    MATERIALS TODAY-PROCEEDINGS, 2021, 46 : 5490 - 5500
  • [22] Investigation of thermal performance of a parabolic trough solar collector using different heat transfer fluids
    Basha, Shaik Khadhar
    Behura, Aruna Kumar
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2023, 45 (03) : 7198 - 7221
  • [23] Life Cycle Assessment of heat transfer fluids in parabolic trough concentrating solar power technology
    Batuecas, E.
    Mayo, C.
    Diaz, R.
    Perez, F. J.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2017, 171 : 91 - 97
  • [24] Daily performance of parabolic trough solar collectors
    Bellos, Evangelos
    Tzivanidis, Christos
    Belessiotis, Vassilis
    SOLAR ENERGY, 2017, 158 : 663 - 678
  • [25] Parabolic-trough solar collectors and their applications
    Fernandez-Garcia, A.
    Zarza, E.
    Valenzuela, L.
    Perez, M.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2010, 14 (07): : 1695 - 1721
  • [26] Thermal performance of parabolic trough solar collectors
    Conrado, L. Salgado
    Rodriguez-Pulido, A.
    Calderon, G.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 67 : 1345 - 1359
  • [27] Alternative designs of parabolic trough solar collectors
    Bellos, Evangelos
    Tzivanidis, Christos
    PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2019, 71 : 81 - 117
  • [28] Comparative Modeling of a Parabolic Trough Collectors Solar Power Plant with MARS Models
    Rogada, Jose Ramon
    Barcia, Lourdes A.
    Martinez, Juan Angel
    Menendez, Mario
    de Cos Juez, Francisco Javier
    ENERGIES, 2018, 11 (01):
  • [29] Investigation of Heat Transfer Enhancement in Parabolic Trough Solar Collectors With Built-in Annular Winglet Vortex Generators
    Zhegn, Nianben
    Zeng, Ruijing
    Chen, Qiang
    Fan, Ruijin
    Sun, Zhiqiang
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2023, 44 (08): : 2188 - 2194
  • [30] Convective heat transfer analysis of direct steam generation in parabolic trough collectors
    Sallam, Sara
    Taqi, Mohamed
    Belouaggadia, Naoual
    1ST INTERNATIONAL CONGRESS ON SOLAR ENERGY RESEARCH, TECHNOLOGY AND APPLICATIONS (ICSERTA 2018), 2018, 2056