A UNIFIED APPROACH TO STOCHASTIC EVOLUTION EQUATIONS USING THE SKOROKHOD INTEGRAL

被引:2
|
作者
Lototsky, S. V. [1 ]
Rozovskii, B. L. [2 ]
机构
[1] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
[2] Brown Univ, Div Appl Math, Providence, RI 02912 USA
基金
美国国家科学基金会;
关键词
generalized random elements; Malliavin calculus; Wick product; Wiener chaos; weighted spaces;
D O I
10.1137/S0040585X97984152
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study stochastic evolution equations driven by Gaussian noise. The key features of the model are that the operators in the deterministic and stochastic parts can have the same order and that the noise can be time-only, space-only, or space-time. Even the simplest equations of this kind do not have a square-integrable solution and must be solved in special weighted spaces. We demonstrate that the Cameron-Martin version of the Wiener chaos decomposition leads to natural weights and a natural replacement of the square integrability condition.
引用
收藏
页码:189 / 202
页数:14
相关论文
共 50 条
  • [41] A splitting/polynomial chaos expansion approach for stochastic evolution equations
    Andreas Kofler
    Tijana Levajković
    Hermann Mena
    Alexander Ostermann
    Journal of Evolution Equations, 2021, 21 : 1345 - 1381
  • [42] A splitting/polynomial chaos expansion approach for stochastic evolution equations
    Kofler, Andreas
    Levajkovic, Tijana
    Mena, Hermann
    Ostermann, Alexander
    JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (02) : 1345 - 1381
  • [43] STOCHASTIC INTEGRAL EQUATIONS ASSOCIATED WITH STRATONOVICH CURVELINE INTEGRAL
    Damian, Virgil
    Varsan, Constantin
    MATHEMATICAL REPORTS, 2012, 14 (04): : 325 - 331
  • [44] Stochastic integral equations for Walsh semimartingales
    Ichiba, Tomoyuki
    Karatzas, Ioannis
    Prokaj, Vilmos
    Yan, Minghan
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2018, 54 (02): : 726 - 756
  • [45] ON MARTINGALE PROPERTY OF THE STOCHASTIC INTEGRAL EQUATIONS
    Kim, Weonbae
    KOREAN JOURNAL OF MATHEMATICS, 2015, 23 (03): : 491 - 502
  • [46] Stochastic integral equations without probability
    Mikosch, T
    Norvaisa, R
    BERNOULLI, 2000, 6 (03) : 401 - 434
  • [48] STOCHASTIC INTEGRAL-EQUATIONS IN THE PLANE
    TUDOR, C
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 1981, 26 (03): : 507 - 538
  • [49] Maximal regularity for stochastic integral equations
    Desch, Gertrud
    Londen, Stig-Olof
    JOURNAL OF APPLIED ANALYSIS, 2013, 19 (01) : 125 - 140
  • [50] Stochastic Volterra integral equations with a parameter
    Wang, Yanqing
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,