Machine-learning inference of fluid variables from data using reservoir computing

被引:52
|
作者
Nakai, Kengo [1 ]
Saiki, Yoshitaka [2 ,3 ,4 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Tokyo 1538914, Japan
[2] Hitotsubashi Univ, Grad Sch Business Adm, Tokyo 1868601, Japan
[3] JST, PRESTO, Saitama 3320012, Japan
[4] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
关键词
NETWORKS;
D O I
10.1103/PhysRevE.98.023111
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We infer both microscopic and macroscopic behaviors of a three-dimensional chaotic fluid flow using reservoir computing. In our procedure of the inference, we assume no prior knowledge of a physical process of a fluid flow except that its behavior is complex but deterministic. We present two ways of inference of the complex behavior: the first, called partial inference, requires continued knowledge of partial time-series data during the inference as well as past time-series data, while the second, called full inference, requires only past time-series data as training data. For the first case, we are able to infer long-time motion of microscopic fluid variables. For the second case, we show that the reservoir dynamics constructed from only past data of energy functions can infer the future behavior of energy functions and reproduce the energy spectrum. It is also shown that we can infer time-series data from only one measurement by using the delay coordinates. This implies that the obtained reservoir systems constructed without the knowledge of microscopic data are equivalent to the dynamical systems describing the macroscopic behavior of energy functions.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Mapping of karst sinkholes from LIDAR data using machine-learning methods in the Trieste area
    Creati, N.
    Paganini, P.
    Sterzai, P.
    Pavan, A.
    JOURNAL OF SPATIAL SCIENCE, 2025,
  • [22] Machine-learning based reconstructions of primary and secondary climate variables from North American and European fossil pollen data
    Salonen, J. Sakari
    Korpela, Mikko
    Williams, John W.
    Luoto, Miska
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [23] Machine-learning paradigms for selecting ecologically significant input variables
    Muttil, Nitin
    Chau, Kwok-Wing
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2007, 20 (06) : 735 - 744
  • [24] Machine Learning Using Cellular Automata Based Feature Expansion and Reservoir Computing
    Yilmaz, Ozgur
    JOURNAL OF CELLULAR AUTOMATA, 2015, 10 (5-6) : 435 - 472
  • [25] Machine-Learning Methods on Noisy and Sparse Data
    Poulinakis, Konstantinos
    Drikakis, Dimitris
    Kokkinakis, Ioannis W.
    Spottswood, Stephen Michael
    MATHEMATICS, 2023, 11 (01)
  • [26] Machine-learning classifiers for imbalanced tornado data
    Trafalis T.B.
    Adrianto I.
    Richman M.B.
    Lakshmivarahan S.
    Computational Management Science, 2014, 11 (4) : 403 - 418
  • [27] Machine-Learning based IoT Data Caching
    Pahl, Marc-Oliver
    Liebald, Stefan
    Wuestrich, Lars
    2019 IFIP/IEEE SYMPOSIUM ON INTEGRATED NETWORK AND SERVICE MANAGEMENT (IM), 2019,
  • [28] A Machine-learning Data Set Prepared from the NASASolar Dynamics ObservatoryMission
    Galvez, Richard
    Fouhey, David F.
    Jin, Meng
    Szenicer, Alexandre
    Munoz-Jaramillo, Andres
    Cheung, Mark C. M.
    Wright, Paul J.
    Bobra, Monica G.
    Liu, Yang
    Mason, James
    Thomas, Rajat
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2019, 242 (01):
  • [29] Machine-Learning Metacomputing for Materials Science Data
    Steuben, J. C.
    Geltmacher, A. B.
    Rodriguez, S. N.
    Birnbaum, A. J.
    Graber, B. D.
    Rawlings, A. K.
    Iliopoulos, A. P.
    Michopoulos, J. G.
    JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING, 2024, 24 (11)
  • [30] Machine-learning techniques for macromolecular crystallization data
    Gopalakrishnan, V
    Livingston, G
    Hennessy, D
    Buchanan, B
    Rosenberg, JM
    ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2004, 60 : 1705 - 1716