Pontryagin's Maximum Principle for Optimal Control of Vibrations of Two Nonlinear Gao Beams

被引:0
|
作者
Wang, Yang-Yang [1 ]
Sun, Bing [1 ,2 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Beijing Key Lab MCAACI, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
CONTACT PROBLEMS; DYNAMIC BEAM; SIMULATIONS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper is concerned with optimal control of vibrations of two uniform elastic or viscoelastic nonlinear Gao beams that are connected with a joint. The dynamic contact is modeled with the Signorini non-penetration or unilateral conditions in which the stops are assumed to be perfectly rigid. By the Dubovitskii and Milyutin functional analytical approach, we derive the Pontryagin maximum principle for the optimal control problem with equality and multiple inequality constraints in fixed final horizon case.
引用
收藏
页码:913 / 918
页数:6
相关论文
共 50 条
  • [11] Pontryagin’s maximum principle in optimal control problems of orientation of a spacecraft
    M. V. Levskii
    Journal of Computer and Systems Sciences International, 2008, 47 : 974 - 986
  • [12] Pontryagin's Maximum Principle for Optimal Control of Stochastic SEIR Models
    Xu, Ruimin
    Guo, Rongwei
    COMPLEXITY, 2020, 2020
  • [13] Optimal control using pontryagin's maximum principle and dynamic programming
    Saerens B.
    Diehl M.
    Van Den Bulck E.
    Lecture Notes in Control and Information Sciences, 2010, 402 : 119 - 138
  • [14] Pontryagin's Maximum Principle for Optimal Control of Stochastic SEIR Models
    Xu, Ruimin
    Guo, Rongwei
    Complexity, 2020, 2020
  • [15] Pontryagin's maximum principle in optimal control problems of orientation of a spacecraft
    Levskii, M. V.
    JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 2008, 47 (06) : 974 - 986
  • [16] Introduction to the Pontryagin Maximum Principle for Quantum Optimal Control
    Boscain, U.
    Sigalotti, M.
    Sugny, D.
    PRX QUANTUM, 2021, 2 (03):
  • [17] Pontryagin maximum principle for optimal control of variational inequalities
    Bergounioux, M
    Zidani, H
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1999, 37 (04) : 1273 - 1290
  • [18] A Pareto-Pontryagin Maximum Principle for Optimal Control
    Lovison, Alberto
    Cardin, Franco
    SYMMETRY-BASEL, 2022, 14 (06):
  • [19] Dual formulation of the Pontryagin maximum principle in optimal control
    Gamkrelidze, R. V.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2015, 291 (01) : 61 - 67
  • [20] Dual formulation of the Pontryagin maximum principle in optimal control
    R. V. Gamkrelidze
    Proceedings of the Steklov Institute of Mathematics, 2015, 291 : 61 - 67