Autonomic closure for turbulence simulations

被引:19
|
作者
King, Ryan N. [1 ]
Hamlington, Peter E. [1 ]
Dahm, Werner J. A. [2 ]
机构
[1] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA
[2] Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85287 USA
关键词
D O I
10.1103/PhysRevE.93.031301
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A new approach to turbulence closure is presented that eliminates the need to specify a predefined turbulence model and instead provides for fully adaptive, self-optimizing, autonomic closures. The closure is autonomic in the sense that the simulation itself determines the optimal local, instantaneous relation between any unclosed term and resolved quantities through the solution of a nonlinear, nonparametric system identification problem. This nonparametric approach allows the autonomic closure to freely adapt to varying nonlinear, nonlocal, nonequilibrium, and other turbulence characteristics in the flow. Even a simple implementation of the autonomic closure for large eddy simulations provides remarkably more accurate results in a priori tests than do dynamic versions of traditional prescribed closures.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Turbulence closure for mixing length theories
    Jermyn, Adam S.
    Lesaffre, Pierre
    Tout, Christopher A.
    Chitre, Shashikumar M.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 476 (01) : 646 - 662
  • [32] THEORIES OF TURBULENCE WITHOUT THE CLOSURE PROBLEM
    PIEST, J
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1994, 74 (05): : T489 - T491
  • [33] Turbulence closure models for stratified seas
    Zoakos, S
    Dyke, PPG
    Graham, DI
    ADVANCES IN FLUID MECHANICS III, 2000, 26 : 513 - 522
  • [34] Quasi-closure and scaling of turbulence
    Qian, J
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2001, 15 (08): : 1085 - 1116
  • [35] THE k-ε-Rt TURBULENCE CLOSURE
    Goldberg, U.
    Peroomian, O.
    Batten, P.
    Chakravarthy, S.
    ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS, 2009, 3 (02) : 175 - 183
  • [36] Turbulence theories and statistical closure approaches
    Zhou, Ye
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2021, 935 : 1 - 117
  • [37] HYDRODYNAMIC TURBULENCE AND SUBGRID SCALE CLOSURE
    ZHOU, Y
    VAHALA, G
    PHYSICS LETTERS A, 1990, 147 (01) : 43 - 48
  • [38] Dissection of the GHER turbulence closure scheme
    Delhez, EJM
    Grégoire, M
    Nihoul, JCJ
    Beckers, JM
    JOURNAL OF MARINE SYSTEMS, 1999, 21 (1-4) : 379 - 397
  • [39] ON THE VARIATIONAL METHOD OF CLOSURE IN THE THEORY OF TURBULENCE
    BAZDENKOV, SV
    KUKHARKIN, NN
    PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1993, 5 (09): : 2248 - 2254
  • [40] Predictive turbulence modeling by variational closure
    Eyink, GL
    Alexander, FJ
    JOURNAL OF STATISTICAL PHYSICS, 1998, 91 (1-2) : 221 - 283