On Recalibration Strategies for Brain-Computer Interfaces Based on the Detection of Motor Intentions

被引:1
|
作者
Ibanez, J. [1 ]
Lopez-Larraz, E. [2 ]
Monge, E. [4 ]
Molina-Rueda, F. [4 ]
Montesano, L. [3 ]
Pons, J. L. [1 ]
机构
[1] Spanish Natl Res Council, Neural Rehabil Grp, Madrid, Spain
[2] Univ Tubingen, Inst Med Psychol & Behav Neurobiol, Tubingen, Germany
[3] BitBrain Technol, Zaragoza, Spain
[4] Univ Rey Juan Carlos Alcorcon, LAMBECOM Grp, Madrid, Spain
关键词
BCI;
D O I
10.1007/978-3-319-46669-9_127
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Coupling motor intentions decoded from cortical activities with coherent proprioceptive feedback is of interest for the motor rehabilitation of neurological patients with lesions in the central nervous system. For these interventions to be effective, repeated sessions need to be carried out to achieve functional long-lasting plastic changes of cortical circuits. Electroencephalography-based Brain-Computer Interfaces typically show significant decreases in accuracy when used across multiple sessions with fixed parameters. Therefore, it is important to look for optimal strategies to recalibrate these classifiers. Here we compare different recalibration strategies for systems decoding motor intentions based on electroencephalographic data of neurological patients.
引用
收藏
页码:775 / 779
页数:5
相关论文
共 50 条
  • [21] Using Motor Imagery to Control Brain-Computer Interfaces for Communication
    Brumberg, Jonathan S.
    Burnison, Jeremy D.
    Pitt, Kevin M.
    FOUNDATIONS OF AUGMENTED COGNITION: NEUROERGONOMICS AND OPERATIONAL NEUROSCIENCE, AC 2016, PT I, 2016, 9743 : 14 - 25
  • [22] Motor Prediction in Brain-Computer Interfaces for Controlling Mobile Robots
    Geng, Tao
    Gan, John Q.
    2008 30TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-8, 2008, : 634 - 637
  • [23] EEG-based brain-computer interfaces
    McFarland, D. J.
    Wolpaw, J. R.
    CURRENT OPINION IN BIOMEDICAL ENGINEERING, 2017, 4 : 194 - 200
  • [24] Brain-computer interfaces (BCIs): Detection instead of classification
    Schalk, G.
    Brunner, P.
    Gerhardt, L. A.
    Bischof, H.
    Wolpaw, J. R.
    JOURNAL OF NEUROSCIENCE METHODS, 2008, 167 (01) : 51 - 62
  • [25] EEG-Based Brain-Computer Interfaces
    Wang, Yijun
    Nakanishi, Masaki
    Zhang, Dan
    NEURAL INTERFACE: FRONTIERS AND APPLICATIONS, 2019, 1101 : 41 - 65
  • [26] A survey on robots controlled by motor imagery brain-computer interfaces
    Zhang, Jincai
    Wang, Mei
    Cognitive Robotics, 2021, 1 : 12 - 24
  • [27] EEG Decoding Based on Normalized Mutual Information for Motor Imagery Brain-Computer Interfaces
    Tang, Chao
    Jiang, Dongyao
    Dang, Lujuan
    Chen, Badong
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2024, 16 (06) : 1997 - 2007
  • [28] Transformed common spatial pattern for motor imagery-based brain-computer interfaces
    Ma, Zhen
    Wang, Kun
    Xu, Minpeng
    Yi, Weibo
    Xu, Fangzhou
    Ming, Dong
    FRONTIERS IN NEUROSCIENCE, 2023, 17
  • [29] Brain-computer interfaces: a review
    Coyle, S
    Ward, T
    Markham, C
    INTERDISCIPLINARY SCIENCE REVIEWS, 2003, 28 (02) : 112 - 118
  • [30] Brain-Computer Interfaces in Medicine
    Shih, Jerry J.
    Krusienski, Dean J.
    Wolpaw, Jonathan R.
    MAYO CLINIC PROCEEDINGS, 2012, 87 (03) : 268 - 279