On Recalibration Strategies for Brain-Computer Interfaces Based on the Detection of Motor Intentions

被引:1
|
作者
Ibanez, J. [1 ]
Lopez-Larraz, E. [2 ]
Monge, E. [4 ]
Molina-Rueda, F. [4 ]
Montesano, L. [3 ]
Pons, J. L. [1 ]
机构
[1] Spanish Natl Res Council, Neural Rehabil Grp, Madrid, Spain
[2] Univ Tubingen, Inst Med Psychol & Behav Neurobiol, Tubingen, Germany
[3] BitBrain Technol, Zaragoza, Spain
[4] Univ Rey Juan Carlos Alcorcon, LAMBECOM Grp, Madrid, Spain
关键词
BCI;
D O I
10.1007/978-3-319-46669-9_127
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Coupling motor intentions decoded from cortical activities with coherent proprioceptive feedback is of interest for the motor rehabilitation of neurological patients with lesions in the central nervous system. For these interventions to be effective, repeated sessions need to be carried out to achieve functional long-lasting plastic changes of cortical circuits. Electroencephalography-based Brain-Computer Interfaces typically show significant decreases in accuracy when used across multiple sessions with fixed parameters. Therefore, it is important to look for optimal strategies to recalibrate these classifiers. Here we compare different recalibration strategies for systems decoding motor intentions based on electroencephalographic data of neurological patients.
引用
收藏
页码:775 / 779
页数:5
相关论文
共 50 条
  • [1] Normalization of Feature Distribution in Motor Imagery Based Brain-Computer Interfaces
    Binias, Bartosz
    Grzejszczak, Tomasz
    Niezabitowski, Michal
    2016 24TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2016, : 1337 - 1342
  • [2] Transfer learning for motor imagery based brain-computer interfaces: A tutorial
    Wu, Dongrui
    Jiang, Xue
    Peng, Ruimin
    NEURAL NETWORKS, 2022, 153 : 235 - 253
  • [3] An Impending Paradigm Shift in Motor Imagery Based Brain-Computer Interfaces
    Papadopoulos, Sotirios
    Bonaiuto, James
    Mattout, Jeremie
    FRONTIERS IN NEUROSCIENCE, 2022, 15
  • [4] Phase-based features for Motor Imagery Brain-Computer Interfaces
    Hamner, Benjamin
    Leeb, Robert
    Tavella, Michele
    Millan, Jose del R.
    2011 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2011, : 2578 - 2581
  • [5] A correntropy-based classifier for motor imagery brain-computer interfaces
    Suarez Uribe, Luisa Fernanda
    Stefano Filho, Carlos Alberto
    de Oliveira, Vinicius Alves
    da Silva Costa, Thiago Bulhoes
    Rodrigues, Paula Gabrielly
    Soriano, Diogo Coutinho
    Boccato, Levy
    Castellano, Gabriela
    Attux, Romis
    BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2019, 5 (06):
  • [6] Motor imagery based brain-computer interfaces: An emerging technology to rehabilitate motor deficits
    Maria Alonso-Valerdi, Luz
    Antonio Salido-Ruiz, Ricardo
    Ramirez-Mendoza, Ricardo A.
    NEUROPSYCHOLOGIA, 2015, 79 : 354 - 363
  • [7] Motor imagery and brain-computer interfaces for restoration of movement
    Neuper, Christa
    INTERNATIONAL JOURNAL OF PSYCHOLOGY, 2008, 43 (3-4) : 724 - 724
  • [8] Detection of Cognitive State for Brain-Computer Interfaces
    Akhanda, Md. Abu Baker Siddique
    Islam, Shaon Md. Foorkanul
    Rahman, Md. Mostafizur
    2013 INTERNATIONAL CONFERENCE ON ELECTRICAL INFORMATION AND COMMUNICATION TECHNOLOGY (EICT), 2013,
  • [9] Recognition of Drivers' Hard and Soft Braking Intentions Based on Hybrid Brain-Computer Interfaces
    Ju, Jiawei
    Feleke, Aberham Genetu
    Luo, Longxi
    Fan, Xinan
    CYBORG AND BIONIC SYSTEMS, 2022, 2022
  • [10] Brain-computer interfaces
    Sajda, Paul
    Mueller, Klaus-Robert
    Shenoy, Krishna V.
    IEEE SIGNAL PROCESSING MAGAZINE, 2008, 25 (01) : 16 - 17