Hyperspectral Image Denoising with a Combined Spatial and Spectral Weighted Hyperspectral Total Variation Model

被引:31
|
作者
Jiang, Cheng [1 ,4 ]
Zhang, Hongyan [2 ,4 ]
Zhang, Liangpei [2 ,4 ]
Shen, Huanfeng [3 ,4 ]
Yuan, Qiangqiang [1 ,4 ]
机构
[1] Wuhan Univ, Sch Geodesy & Geomat, 129 Luoyu Rd, Wuhan 430079, Peoples R China
[2] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, 129 Luoyu Rd, Wuhan 430079, Peoples R China
[3] Wuhan Univ, Sch Resources & Environm Sci, 129 Luoyu Rd, Wuhan 430079, Peoples R China
[4] Wuhan Univ, Collaborat Innovat Ctr Geospatial Technol, 129 Luoyu Rd, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
ANISOTROPIC DIFFUSION; NOISE-REDUCTION; SPARSE REPRESENTATION; REGRESSION; ALGORITHM; REMOVAL;
D O I
10.1080/07038992.2016.1158094
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Hyperspectral image (HSI) denoising is a prerequisite for many subsequent applications. For an HSI, the level and type of noise often vary with different bands and spatial positions, which make it difficult to effectively remove noise while preserving textures and edges. To alleviate this problem, we propose a new total-variation model. The main contribution of the proposed approach lies in that the adaptive regularization terms in both the spatial and the spectral dimensions are designed separately and then combined into a unified framework. The 2 separate regularization terms allow a better description of the intrinsic nature of the original HSI data and can simultaneously penalize the noise from both the spatial and spectral perspectives. The designed weights for the regularization terms are positively correlated with the magnitude of the noise intensity and negatively correlated with the signal variation; thus, the original signal can be accurately retained and the noise can be effectively suppressed. To efficiently process the HSI, which appears as a huge data cube, a new optimization algorithm based on the alternating direction method of multipliers (ADMM) procedure is proposed to solve the new model. Experiments using HYDICE and AVIRIS images were conducted to validate the effectiveness of the proposed method.Resume. Hyperspectrale l'image (HSI) debruitage est une condition prealable pour de nombreuses applications ulterieures. Pour un HSI, le niveau et le type de bruit varie souvent avec differents groupes et positions spatiales, ce qui rend difficile d'eliminer efficacement le bruit tout en preservant les textures et les bords. Pour pallier ce probleme, nous proposons un nouveau modele de variation totale. Les principales contributions de l'approche proposee mensonge dans la conception des termes de regularisation adaptative dans les deux dimensions spatiales et spectrales, et en les combinant dans un cadre unifie. Les deux termes de regularisation separes permettent une meilleure description de la nature intrinseque des donnees HSI original et peuvent penaliser simultanement le bruit a la fois des perspectives spatiales et spectrales. Les poids concus pour les termes de regularisation sont en correlation positive avec la grandeur de l'intensite du bruit et correlation negative avec la variation de signal; ainsi, le signal d'origine peut etre retenu avec precision et le bruit peut etre efficacement supprimee. Pour traiter efficacement le HSI, qui apparait comme un enorme cube de donnees, un nouvel algorithme d'optimisation base sur la methode de direction alternee de multiplicateurs << alternating direction method of multipliers >> (ADMM) procedure est proposee pour resoudre le nouveau modele. Des experiences utilisant des images AVIRIS et HYDICE et ont ete menees afin de valider l'efficacite de la methode proposee.
引用
收藏
页码:53 / 72
页数:20
相关论文
共 50 条
  • [21] Hyperspectral Image Denoising Based on Hyper-Laplacian Total Variation in Spectral Gradient Domain
    Yang, Fang
    Hu, Qiangfu
    Su, Xin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [22] Low-Rank and Spectral-Spatial Variation Regularized Hyperspectral Image Denoising Algorithm
    Liu, Yanhui
    Wang, Weiguo
    FOURTEENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING, ICGIP 2022, 2022, 12705
  • [23] Hyperspectral Image Restoration Based on Low-Rank Recovery With a Local Neighborhood Weighted Spectral-Spatial Total Variation Model
    Liu, Hongyi
    Sun, Peipei
    Du, Qian
    Wu, Zebin
    Wei, Zhihui
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (03): : 1409 - 1422
  • [24] Hyperspectral Image Classification using Combined Spectral-Spatial Denoising and Deep Learning Techniques
    Miclea, Andreia Valentina
    Terebes, Romulus
    Ilea, Ioana
    Borda, Monica
    2018 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION, QUALITY AND TESTING, ROBOTICS (AQTR), 2018,
  • [25] SSUMamba: Spatial-Spectral Selective State Space Model for Hyperspectral Image Denoising
    Fu, Guanyiman
    Xiong, Fengchao
    Lu, Jianfeng
    Zhou, Jun
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [26] HYPERSPECTRAL IMAGE DENOISING VIA WEIGHTED DOUBLE SPARSITY TOTAL VARIATION AND LOW-RANK REPRESENTATION
    Huang, Jie
    Chen, Ke-Han
    Wang, Jin-Ju
    Yan, Wen
    INVERSE PROBLEMS AND IMAGING, 2024, 18 (05) : 1142 - 1170
  • [27] Weighted Total Variation Regularized Blind Unmixing for Hyperspectral Image
    Song, Hanjie
    Wu, Xing
    Zou, Anqi
    Liu, Yang
    Zou, Yongliao
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [28] Spectral-Spatial Hyperspectral Image Classification via Adaptive Total Variation Filtering
    Tu, Bing
    Wang, Jinping
    Zhang, Xiaofei
    Huang, Siyuan
    Zhang, Guoyun
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2018, PT II, 2018, 11165 : 45 - 56
  • [29] Hyperspectral Image Denoising Using Local Low-Rank Matrix Recovery and Global Spatial-Spectral Total Variation
    He, Wei
    Zhang, Hongyan
    Shen, Huanfeng
    Zhang, Liangpei
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (03) : 713 - 729
  • [30] Hyperspectral Image Denoising Using Nonconvex Local Low-Rank and Sparse Separation With Spatial Spectral Total Variation Regularization
    Peng, Chong
    Liu, Yang
    Kang, Kehan
    Chen, Yongyong
    Wu, Xinxing
    Cheng, Andrew
    Kang, Zhao
    Chen, Chenglizhao
    Cheng, Qiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60