共 50 条
High applicability of two-dimensional phosphorous in Kagome lattice predicted from first-principles calculations
被引:29
|作者:
Chen, Peng-Jen
[1
,2
,3
,4
]
Jeng, Horng-Tay
[4
,5
]
机构:
[1] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan
[2] Acad Sinica, Taiwan Int Grad Program, Nano Sci & Technol Program, Taipei 11529, Taiwan
[3] Natl Taiwan Univ, Taipei 10617, Taiwan
[4] Acad Sinica, Inst Phys, Taipei 11529, Taiwan
[5] Natl Tsing Hua Univ, Dept Phys, Hsinchu 30013, Taiwan
来源:
关键词:
BLACK PHOSPHORUS;
QUASI-PARTICLE;
GAS;
D O I:
10.1038/srep23151
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
A new semiconducting phase of two-dimensional phosphorous in the Kagome lattice is proposed from first-principles calculations. The band gaps of the monolayer (ML) and bulk Kagome phosphorous (Kagome-P) are 2.00 and 1.11 eV, respectively. The magnitude of the band gap is tunable by applying the in-plane strain and/or changing the number of stacking layers. High optical absorption coefficients at the visible light region are predicted for multilayer Kagome-P, indicating potential applications for solar cell devices. The nearly dispersionless top valence band of the ML Kagome-P with high density of states at the Fermi level leads to superconductivity with T-c of similar to 9 K under the optimal hole doping concentration. We also propose that the Kagome-P can be fabricated through the manipulation of the substrate-induced strain during the process of the sample growth. Our work demonstrates the high applicability of the Kagome-P in the fields of electronics, photovoltaics, and superconductivity.
引用
收藏
页数:8
相关论文