Enhanced optoelectronic performances of vertically aligned hexagonal boron nitride nanowalls-nanocrystalline diamond heterostructures

被引:18
|
作者
Sankaran, Kamatchi Jothiramalingam [1 ,2 ]
Hoang, Duc Quang [1 ,2 ]
Kunuku, Srinivasu [3 ]
Korneychuk, Svetlana [4 ]
Turner, Stuart [4 ]
Pobedinskas, Paulius [1 ,2 ]
Drijkoningen, Sien [1 ,2 ]
Van Bael, Marlies K. [1 ,2 ]
D'Haen, Jan [1 ,2 ]
Verbeeck, Johan [4 ]
Leou, Keh-Chyang [3 ]
Lin, I-Nan [5 ]
Haenen, Ken [1 ,2 ]
机构
[1] Hasselt Univ, Inst Mat Res IMO, B-3590 Diepenbeek, Belgium
[2] IMEC VZW, IMOMEC, B-3590 Diepenbeek, Belgium
[3] Natl Tsing Hua Univ, Dept Engn & Syst Sci, Hsinchu 30013, Taiwan
[4] Univ Antwerp, Electron Microscopy Mat Sci EMAT, B-2020 Antwerp, Belgium
[5] Tamkang Univ, Dept Phys, Tamsui 251, Taiwan
来源
SCIENTIFIC REPORTS | 2016年 / 6卷
关键词
NEGATIVE ELECTRON-AFFINITY; CORE/SHELL NANOWIRE ARRAYS; FIELD-EMISSION PROPERTIES; VAPOR-DEPOSITED DIAMOND; RAMAN-SPECTROSCOPY; OPTICAL-PROPERTIES; CARBON NANOTUBES; THIN-FILMS; GROWTH; NANOSHEETS;
D O I
10.1038/srep29444
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Field electron emission (FEE) properties of vertically aligned hexagonal boron nitride nanowalls (hBNNWs) grown on Si have been markedly enhanced through the use of nitrogen doped nanocrystalline diamond (nNCD) films as an interlayer. The FEE properties of hBNNWs-nNCD heterostructures show a low turn-on field of 15.2 V/mu m, a high FEE current density of 1.48 mA/cm(2) and life-time up to a period of 248 min. These values are far superior to those for hBNNWs grown on Si substrates without the nNCD interlayer, which have a turn-on field of 46.6 V/mu m with 0.21 mA/cm(2) FEE current density and life-time of 27 min. Cross-sectional TEM investigation reveals that the utilization of the diamond interlayer circumvented the formation of amorphous boron nitride prior to the growth of hexagonal boron nitride. Moreover, incorporation of carbon in hBNNWs improves the conductivity of hBNNWs. Such a unique combination of materials results in efficient electron transport crossing nNCD-to-hBNNWs interface and inside the hBNNWs that results in enhanced field emission of electrons. The prospective application of these materials is manifested by plasma illumination measurements with lower threshold voltage (370 V) and longer life-time, authorizing the role of hBNNWs-nNCD heterostructures in the enhancement of electron emission.
引用
收藏
页数:11
相关论文
共 35 条
  • [31] Vertically Aligned Silicon Carbide Nanowires/Boron Nitride Cellulose Aerogel Networks Enhanced Thermal Conductivity and Electromagnetic Absorbing of Epoxy Composites
    Duo Pan
    Gui Yang
    Hala M. Abo-Dief
    Jingwen Dong
    Fengmei Su
    Chuntai Liu
    Yifan Li
    Ben Bin Xu
    Vignesh Murugadoss
    Nithesh Naik
    Salah M. El-Bahy
    Zeinhom M. El-Bahy
    Minan Huang
    Zhanhu Guo
    Nano-Micro Letters, 2022, 14
  • [32] Self-aligned gate electrode for hydrogen-terminated diamond field-effect transistors with a hexagonal boron nitride gate insulator
    Sasama, Yosuke
    Iwasaki, Takuya
    Monish, Mohammad
    Watanabe, Kenji
    Taniguchi, Takashi
    Takahide, Yamaguchi
    APPLIED PHYSICS LETTERS, 2024, 125 (09)
  • [33] High-mobility p-channel wide-bandgap transistors based on hydrogen-terminated diamond/hexagonal boron nitride heterostructures
    Yosuke Sasama
    Taisuke Kageura
    Masataka Imura
    Kenji Watanabe
    Takashi Taniguchi
    Takashi Uchihashi
    Yamaguchi Takahide
    Nature Electronics, 2022, 5 : 37 - 44
  • [34] High-mobility p-channel wide-bandgap transistors based on hydrogen-terminated diamond/hexagonal boron nitride heterostructures
    Sasama, Yosuke
    Kageura, Taisuke
    Imura, Masataka
    Watanabe, Kenji
    Taniguchi, Takashi
    Uchihashi, Takashi
    Takahide, Yamaguchi
    NATURE ELECTRONICS, 2022, 5 (01) : 37 - 44
  • [35] Photocarrier Dynamics in TlGaS2 Nanoflakes and van der Waals Heterostructures with Hexagonal Boron Nitride and WS2 Nanoflakes: Implications for Optoelectronic Applications
    Fu, Yang
    He, Dawei
    He, Jiaqi
    Han, Xiuxiu
    Bai, Jinxuan
    Wang, Yongsheng
    Zhao, Hui
    ACS APPLIED NANO MATERIALS, 2020, 3 (09) : 8702 - 8707