Ultrafast laser spatial beam shaping based on Zernike polynomials for surface processing

被引:12
|
作者
Houzet, J. [1 ]
Faure, N. [1 ,2 ]
Larochette, M. [3 ]
Brulez, A. -C. [3 ,4 ]
Benayoun, S. [3 ]
Mauclair, C. [1 ,2 ]
机构
[1] Univ Jean Monnet, Univ Lyon, UMR CNRS 5516, Lab Hubert Curien, F-42000 St Etienne, France
[2] GIE Manutech USD, F-42000 St Etienne, France
[3] Ecole Cent Lyon, UMR CNRS 5513, Lab Tribol & Dynam Syst, 36 Ave Guy de Collongues, F-69134 Ecully, France
[4] Inst Text & Chim Lyon, Lab Genie Fonctionnalisat Mat Polymeres, 87 Chemin Mouilles, F-69134 Ecully, France
来源
OPTICS EXPRESS | 2016年 / 24卷 / 06期
关键词
FEMTOSECOND LASER; INTENSITY PROFILE; STAINLESS-STEEL; ABLATION; METALS;
D O I
10.1364/OE.24.006542
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In femtosecond laser machining, spatial beam shaping can be achieved with wavefront modulators. The wavefront modulator displays a pre-calculated phase mask that modulates the laser wavefront to generate a target intensity distribution in the processing plane. Due to the non-perfect optical response of wavefront modulators, the experimental distribution may significantly differ from the target, especially for continuous shapes. We propose an alternative phase mask calculation method that can be adapted to the phase modulator optical performance. From an adjustable number of Zernike polynomials according to this performance, a least square fitting algorithm numerically determines their coefficients to obtain the desired wavefront modulation. We illustrate the technique with an optically addressed liquid-crystal light valve to produce continuous intensity distributions matching a desired ablation profile, without the need of a wavefront sensor. The projection of the experimental laser distribution shows a 5% RMS error compared to the calculated one. Ablation of steel is achieved following user-defined micro-dimples and micro-grooves targets on mold surfaces. The profiles of the microgrooves and the injected polycarbonate closely match the target (RMS below 4%). (C) 2016 Optical Society of America
引用
收藏
页码:6542 / 6552
页数:11
相关论文
共 50 条
  • [31] Ultrafast laser nanostructuring in transparent materials for beam shaping and data storage [Invited]
    Lei, Yuhao
    Wang, Huijun
    Shayeganrad, Gholamreza
    Kazansky, Peter G.
    OPTICAL MATERIALS EXPRESS, 2022, 12 (09) : 3327 - 3355
  • [32] Spatial laser beam shaping using digital micromirror device
    Huang D.
    Fan W.
    Lin Z.
    Zhongguo Jiguang/Chinese Journal of Lasers, 2011, 38 (05):
  • [33] Spatial beam shaping of ultrashort laser pulses:: theory and experiment
    Zhang, SY
    Yang, QG
    Lüpke, G
    APPLIED OPTICS, 2005, 44 (27) : 5818 - 5823
  • [34] Laser beam shaping with purposefully changing of spatial power distribution
    Murzin, Serguei P.
    Kazanskiy, Nikolay L.
    OPTICAL TECHNOLOGIES FOR TELECOMMUNICATIONS 2017, 2018, 10774
  • [35] Imaging-based amplitude laser beam shaping for material processing by 2D reflectivity tuning of a spatial light modulator
    Li, Jiangning
    Kuang, Zheng
    Edwardson, Stuart
    Perrie, Walter
    Liu, Dun
    Dearden, Geoff
    APPLIED OPTICS, 2016, 55 (05) : 1095 - 1100
  • [36] Size correction in ultrafast laser processing of fused silica by temporal pulse shaping
    Mermillod-Blondin, A.
    Mauclair, C.
    Rosenfeld, A.
    Bonse, J.
    Hertel, I. V.
    Audouard, E.
    Stoian, R.
    APPLIED PHYSICS LETTERS, 2008, 93 (02)
  • [37] Numerical investigation of laser beam shaping for heat transfer control in laser processing
    Martin, B
    Loredo, A
    Grevey, D
    Vannes, AB
    LASERS IN ENGINEERING, 2002, 12 (04) : 247 - 269
  • [38] Laser beam shaping for microstructural control during laser surface melting
    Khare, Jai
    Kaul, Rakesh
    Ganesh, P.
    Kumar, Harish
    Jagdheesh, R.
    Nath, A. K.
    JOURNAL OF LASER APPLICATIONS, 2007, 19 (01) : 1 - 7
  • [39] Laser Space Shaping Based on Beam Integration
    Meng Jingjing
    Yu Jin
    Mo Zegiang
    Wang Jinduo
    Dai Shoujun
    Wang Xiaodong
    LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (13)
  • [40] Freeform surface optical design of Zernike polynomials based on nodal aberration theory
    Pan, Sihao
    Pan, Zhifeng
    Chen, Jianfa
    OPTICAL DESIGN AND TESTING VIII, 2018, 10815