CHARACTERIZATIONS OF GRAPHS HAVING LARGE PROPER CONNECTION NUMBERS

被引:15
|
作者
Lumduanhom, Chira [1 ]
Laforge, Elliot [2 ]
Zhang, Ping [2 ]
机构
[1] Srinakharinwirol Univ, Dept Math, Sukhumvit Soi 23, Bangkok 10110, Thailand
[2] Western Michigan Univ, Dept Math, Kalamazoo, MI 49008 USA
关键词
edge coloring; proper-path coloring; strong proper-path coloring; RAINBOW CONNECTION;
D O I
10.7151/dmgt.1867
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be an edge-colored connected graph. A path P is a proper path in G if no two adjacent edges of P are colored the same. if P is a proper u - v path of length d(u, v), then P is a proper u - v geodesic. An edge coloring c is a proper-path coloring of a connected graph G if every pair u, v of distinct vertices of G are connected by a proper u - v path in G, and c is a strong proper-path coloring if every two vertices u and v are connected by a proper u - v geodesic in G. The minimum number of colors required for a proper-path coloring or strong proper-path coloring of G is called the proper connection number pc(G) or strong proper connection number spc(G) of G, respectively. if G is a nontrivial connected graph of size m, then pc(G) <= spc(G) <= m and pc(G) = m or spc(G) = m if and only if G is the star of size m. In this paper, we determine all connected graphs G of size m for which pc(G) or spc(G) is m - 1, m - 2 or m - 3.
引用
收藏
页码:439 / 453
页数:15
相关论文
共 50 条
  • [21] Metric characterizations of proper interval graphs and tree-clique graphs
    Gutierrez, M
    Oubina, L
    JOURNAL OF GRAPH THEORY, 1996, 21 (02) : 199 - 205
  • [22] Note on vertex and total proper connection numbers
    Chizmar, Emily
    Magnant, Colton
    Nowbandegani, Pouria Salehi
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2016, 13 (02) : 103 - 106
  • [23] Proper orientation, proper biorientation and semi-proper orientation numbers of graphs
    J. Ai
    S. Gerke
    G. Gutin
    H. Lei
    Y. Shi
    Journal of Combinatorial Optimization, 2023, 45
  • [24] Characterizations of graphs with prescribed connected detour numbers
    Ali, Ahmed M.
    Ali, Ali A.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (08)
  • [25] Proper orientation, proper biorientation and semi-proper orientation numbers of graphs
    Ai, J.
    Gerke, S.
    Gutin, G.
    Lei, H.
    Shi, Y.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2023, 45 (01)
  • [26] Proper orientation, proper biorientation and semi-proper orientation numbers of graphs
    Ai, J.
    Gerke, S.
    Gutin, G.
    Lei, H.
    Shi, Y.
    Journal of Combinatorial Optimization, 2023, 45 (01):
  • [27] Rainbow connection numbers of Cayley graphs
    Ma, Yingbin
    Lu, Zaiping
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 34 (01) : 182 - 193
  • [28] Proper-walk connection number of graphs
    Bang-Jensen, Jorgen
    Bellitto, Thomas
    Yeo, Anders
    JOURNAL OF GRAPH THEORY, 2021, 96 (01) : 137 - 159
  • [29] Proper connection of power graphs of finite groups
    Ma, Xuanlong
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2021, 20 (03)
  • [30] ON PROPER HAMILTONIAN-CONNECTION NUMBER OF GRAPHS
    Sampathkumar, R.
    Anantharaman, S.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2022, 12 (03): : 1020 - 1031