The effect of fractures on the steam-assisted gravity drainage process

被引:12
|
作者
Bagci, S [1 ]
机构
[1] Middle E Tech Univ, Dept Petr & Nat Gas Engn, TR-06531 Ankara, Turkey
关键词
D O I
10.1021/ef0301553
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This study presents an experimental investigation of the effect of fractures and well configurations on the steam-assisted gravity drainage (SAGD) process in a three-dimensional model, using 12.4degreesAPI gravity crude oil. A total of eight runs were conducted, using a 30 cm x 30 cm x 10 cm rectangular-shaped box model. Temperature distributions were observed using 25 thermocouples. Three different well configurations were investigated-a horizontal injection and production well pair, a vertical injection-vertical production well pair, and a vertical injection -horizontal production well pair-with and without fractures that provided a vertical path through the horizontal producer. The influence of fracture distribution on the steam-oil ratio (SOR) and oil recovery was analyzed using the horizontal well pair scheme, a vertical injection-horizontal production well pair, and a vertical injection and vertical production well scheme. The experimental results indicated that vertical fractures improved SAGD. Maximum oil recovery was observed during the horizontal injection-horizontal production well scheme with a fractured model, because of the favorable steam-chamber geometry. Runs showed that the location of the fractures affects the performance of the process. During the early stages of the runs, the fractured model gave significantly higher SORs than those observed in the uniform-permeability reservoir.
引用
收藏
页码:1656 / 1664
页数:9
相关论文
共 50 条
  • [21] Compositional Mechanisms in Steam-Assisted Gravity Drainage and Expanding-Solvent Steam-Assisted Gravity Drainage With Consideration of Water Solubility in Oil
    Venkatramani, Arun Venkat
    Okuno, Ryosuke
    SPE RESERVOIR EVALUATION & ENGINEERING, 2017, 20 (03) : 681 - 697
  • [22] Effect of Initial Water Saturation on the Thermal Efficiency of the Steam-Assisted Gravity-Drainage Process
    Javad, S.
    Oskouei, P.
    Maini, B.
    Moore, R. G.
    Mehta, S. A.
    JOURNAL OF CANADIAN PETROLEUM TECHNOLOGY, 2012, 51 (05): : 351 - 361
  • [23] Investigation of Emulsion Flow in Steam-Assisted Gravity Drainage
    Ezeuko, C. C.
    Wang, J.
    Gates, I. D.
    SPE JOURNAL, 2013, 18 (03): : 440 - 447
  • [24] Organic bases as additives for steam-assisted gravity drainage
    Sean D. Brame
    Litan Li
    Biplab Mukherjee
    Pramod D. Patil
    Stephanie Potisek
    Quoc P. Nguyen
    Petroleum Science, 2019, 16 (06) : 1332 - 1343
  • [25] A laboratory study of single-well steam-assisted gravity drainage process
    Akin, S
    Bagci, S
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2001, 32 (01) : 23 - 33
  • [26] Nanoparticles Technology for Improving Steam-Assisted Gravity Drainage Process Performance: A Review
    Prada, Luis
    Botett, Jesus
    Contreras-Mateus, M. Daniela
    Hethnawi, Afif
    Baakeem, Saleh S.
    Nassar, Nashaat N.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2024, 63 (30) : 13047 - 13077
  • [27] A NEW APPROACH TO THE MODELING OF STEAM-ASSISTED GRAVITY DRAINAGE
    BUTLER, RM
    JOURNAL OF CANADIAN PETROLEUM TECHNOLOGY, 1984, 23 (02): : 38 - 38
  • [28] WELLBORE FLOW RESISTANCE IN STEAM-ASSISTED GRAVITY DRAINAGE
    ONG, TS
    BUTLER, RM
    JOURNAL OF CANADIAN PETROLEUM TECHNOLOGY, 1990, 29 (06): : 49 - 55
  • [29] Transient convective heat transfer in a steam-assisted gravity drainage (SAGD) process
    Jia, Xinfeng
    Qu, Tailai
    Chen, Haidong
    Chen, Zhangxin
    FUEL, 2019, 247 : 315 - 323
  • [30] A NEW APPROACH TO THE MODELING OF STEAM-ASSISTED GRAVITY DRAINAGE
    BUTLER, RM
    JOURNAL OF CANADIAN PETROLEUM TECHNOLOGY, 1985, 24 (03): : 42 - 51