Pulmonary Nodule Classification Aided by Clustering

被引:6
|
作者
Lee, S. L. A. [1 ]
Kouzani, A. Z. [1 ]
Nasierding, G. [1 ]
Hu, E. J. [2 ]
机构
[1] Deakin Univ, Sch Engn, Waum Ponds, Vic 3217, Australia
[2] Univ Adelaide, Sch Mech Engn, North Terrace, Adelaide, SA 5005, Australia
关键词
classification aided by clustering; nodule; detection; LUNG NODULES; CT; SEGMENTATION; IMAGES;
D O I
10.1109/ICSMC.2009.5346753
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Lung nodules can be detected through examining CT scans. An automated lung nodule classification system is presented in this paper. The system employs random forests as its base classifier. A unique architecture for classification-aided-by-clustering is presented. Four experiments are conducted to study the performance of the developed system. 5721 CT lung image slices from the LIDC database are employed in the experiments. According to the experimental results, the highest sensitivity of 97.92%, and specificity of 96.28% are achieved by the system. The results demonstrate that the system has improved the performances of its tested counterparts.
引用
收藏
页码:906 / +
页数:2
相关论文
共 50 条
  • [41] A novel pulmonary nodule classification framework based on mobile edge computing
    Wang P.
    Zhao Z.
    International Journal of Wireless and Mobile Computing, 2020, 18 (01) : 80 - 89
  • [42] Improved pulmonary nodule classification utilizing quantitative lung parenchyma features
    Dilger, Samantha K. N.
    Uthoff, Johanna
    Judisch, Alexandra
    Hammond, Emily
    Mott, Sarah L.
    Smith, Brian J.
    Newell, John D., Jr.
    Hoffman, Eric A.
    Sieren, Jessica C.
    JOURNAL OF MEDICAL IMAGING, 2015, 2 (04)
  • [43] Pulmonary Nodule Classification with Multi-View Convolutional Vision Transformer
    Xiong, Yuxuan
    Du, Bo
    Xu, Yongchao
    Deng, Jiajun
    She, Yunlang
    Chen, Chang
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [44] Automated Pulmonary Nodule Classification and Detection Using Deep Learning Architectures
    Ahmed, Imran
    Chehri, Abdellah
    Jeon, Gwanggil
    Piccialli, Francesco
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2023, 20 (04) : 2445 - 2456
  • [45] Narrative review of classification and management of solitary pulmonary nodule: the state of art
    Gonfiotti, Alessandro
    Salvicchi, Alberto
    Voltolini, Luca
    AME SURGICAL JOURNAL, 2022, 2
  • [46] Pulmonary nodule
    Feragalli, B
    Guido, F
    Larici, AR
    Storto, ML
    Bonomo, L
    RADIOLOGIA MEDICA, 2005, 110 (04): : 294 - 314
  • [47] To Be or Not to Be ... a Pulmonary Nodule
    de Margerie-Mellon, Constance
    Bankier, Alexander A.
    RADIOLOGY-CARDIOTHORACIC IMAGING, 2019, 1 (05):
  • [48] THE PULMONARY NODULE
    ZERHOUNI, EA
    CASKEY, C
    KHOURI, NF
    SEMINARS IN ULTRASOUND CT AND MRI, 1988, 9 (01) : 67 - 78
  • [49] Clustering-aided prediction of outcomes in patients with idiopathic pulmonary fibrosis
    Wang, Lijun
    Wu, Peitao
    Liu, Yi
    Patel, Divya C.
    Leonard, Thomas B.
    Zhao, Hongyu
    RESPIRATORY RESEARCH, 2024, 25 (01)
  • [50] Pulmonary nodule classification based on nodule retrieval from 3-D thoracic CT image database
    Kawata, Y
    Niki, N
    Ohmatsu, H
    Kusumoto, M
    Kakinuma, R
    Yamada, K
    Mori, K
    Nishiyama, H
    Eguchi, K
    Kaneko, M
    Moriyama, N
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2004, PT 2, PROCEEDINGS, 2004, 3217 : 838 - 846