On statistical approximation properties of Kantorovich type q-Bernstein operators

被引:26
|
作者
Dalmanoglu, Oezge [2 ]
Dogru, Oguen [1 ]
机构
[1] Gazi Univ, Fac Sci & Arts, Dept Math, TR-06500 Ankara, Turkey
[2] Ankara Univ, Dept Math, Grad Sch Nat & Appl Sci, TR-06100 Ankara, Turkey
关键词
Korovkin theorem; Statistical convergence; q-integers; Kantorovich type operators; Modulus of continuity; Lipschitz class; CONVERGENCE; INEQUALITIES; POLYNOMIALS;
D O I
10.1016/j.mcm.2010.05.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this study a new Kantorovich type generalization of q-Bernstein operators is introduced with the help of some recent studies on q-calculus. Then the statistical Korovkin type approximation properties of these operators are investigated. Finally, the order of statistical approximation is examined by means of modulus of continuity and with the help of the elements of Lipschitz class. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:760 / 771
页数:12
相关论文
共 50 条
  • [41] APPROXIMATION PROPERTIES OF BERNSTEIN-KANTOROVICH TYPE OPERATORS OF TWO VARIABLES
    Karahan, Done
    Izgi, Aydin
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2019, 68 (02): : 2313 - 2323
  • [42] Kantorovich-Stancu type (α,λ,s) - Bernstein operators and their approximation properties
    Turhan, Nezihe
    Ozger, Faruk
    Mursaleen, Mohammad
    MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2024, 30 (01) : 228 - 265
  • [43] Approximation Properties of Bivariate Extension of q-Bernstein-Schurer-Kantorovich operators
    Acu, Ana Maria
    Muraru, Carmen Violeta
    RESULTS IN MATHEMATICS, 2015, 67 (3-4) : 265 - 279
  • [44] On the eigenfunctions of the q-Bernstein operators
    Sofiya Ostrovska
    Mehmet Turan
    Annals of Functional Analysis, 2023, 14
  • [45] On the eigenfunctions of the q-Bernstein operators
    Ostrovska, Sofiya
    Turan, Mehmet
    ANNALS OF FUNCTIONAL ANALYSIS, 2023, 14 (01)
  • [46] Statistical Approximation of the q-Bernstein-Durrmeyer Type Operators
    Ren, Mei-Ying
    FUZZY SYSTEMS & OPERATIONS RESEARCH AND MANAGEMENT, 2016, 367 : 117 - 124
  • [47] Stancu type q-Bernstein operators with shifted knots
    M. Mursaleen
    Mohd Qasim
    Asif Khan
    Zaheer Abbas
    Journal of Inequalities and Applications, 2020
  • [48] Statistical approximation properties of Stancu type λ-Bernstein operators
    Wang, Peng-Hui
    Cai, Qing-Bo
    PROCEEDINGS OF 2019 IEEE 2ND INTERNATIONAL CONFERENCE ON ELECTRONIC INFORMATION AND COMMUNICATION TECHNOLOGY (ICEICT 2019), 2019, : 178 - 182
  • [49] Phillips-Type q-Bernstein Operators on Triangl
    Khan, Asif
    Mansoori, M. S.
    Khan, Khalid
    Mursaleen, M.
    JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [50] Approximation properties of (p, q)-Bernstein type operators
    Finta, Zoltan
    ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2016, 8 (02) : 222 - 232