Person Identification With Low Training Sample Based on Micro-Doppler Signatures Separation

被引:5
|
作者
Qiao, Xingshuai [1 ]
Feng, Yuan [2 ,3 ]
Shan, Tao [2 ,3 ]
Tao, Ran [2 ,3 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
[2] Beijing Inst Technol, Beijing Key Lab Fract Signals & Syst, Beijing 100081, Peoples R China
[3] Beijing Inst Technol, Sch Informat & Elect, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Radar; Spectrogram; Principal component analysis; Training; Torso; Task analysis; Feature extraction; Person identification; micro-Doppler signatures; short-time fractional Fourier transform; convolutional principal component analysis; PRINCIPAL COMPONENT ANALYSIS; CLASSIFICATION; RADAR; PCA;
D O I
10.1109/JSEN.2022.3162590
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Due to the ability to handle low-light environments, poor weather conditions and privacy protection, person identification based on radar micro-Doppler (m-D) signatures has emerged as a research interest. Moreover, as it is always difficult to construct large-scale radar data sets, we propose an approach to recognize a person's identity with limited training sample. In which, the fine m-D signal processing technology is first used to obtain high-quality m-D data spectrograms. A three-layer convolutional principal component analysis network with a dimension optimization architecture (CPCAN-3) is then designed to learn the highly discriminative features and address the identification problem. The model has few network parameters, is easy to train, and has low dependence on a large number of training samples. Different daily activities data are captured in an indoor environment to evaluate the performance of proposed method, and the state-of-the-art algorithms are chosen for comparison. The experimental results show that the proposed scheme performs better performance than the others on small data sets. Especially when the motion of "running" is adopted to identify persons, the model achieves 98% accuracy on the identification of ten people.
引用
收藏
页码:8846 / 8857
页数:12
相关论文
共 50 条
  • [31] Analytic Radar micro-Doppler Signatures Classification
    Oh, Beom-Seok
    Gu, Zhaoning
    Wang, Guan
    Toh, Kar-Ann
    Lin, Zhiping
    SECOND INTERNATIONAL WORKSHOP ON PATTERN RECOGNITION, 2017, 10443
  • [32] Advances in Applications of Radar Micro-Doppler Signatures
    Chen, Victor C.
    2014 IEEE CONFERENCE ON ANTENNA MEASUREMENTS & APPLICATIONS (CAMA), 2014,
  • [34] A Multi-Characteristic Learning Method with Micro-Doppler Signatures for Pedestrian Identification
    Xiang, Yu
    Huang, Yu
    Xu, Haodong
    Zhang, Guangbo
    Wang, Wenyong
    2022 IEEE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2022, : 3794 - 3799
  • [35] Identification Technology of UAV Based on Micro-Doppler Effect
    Hong, Tao
    Fang, Chaoqun
    Hao, Hai
    Sun, Wenbo
    IWCMC 2021: 2021 17TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE (IWCMC), 2021, : 308 - 311
  • [36] Multiple walking human recognition based on radar micro-Doppler signatures
    SUN ZhongSheng
    WANG Jun
    ZHANG YaoTian
    SUN JinPing
    YUAN ChangShun
    BI YanXian
    ScienceChina(InformationSciences), 2015, 58 (12) : 177 - 189
  • [37] Activity classification for camouflaged human target based on micro-Doppler signatures
    Chen, Yi-Wang
    Jin, Xiu-Hai
    Zhang, Pin
    Pan, Yu-Xin
    Jiefangjun Ligong Daxue Xuebao/Journal of PLA University of Science and Technology (Natural Science Edition), 2012, 13 (05): : 505 - 510
  • [38] Radar Classification for Traffic Intersection Surveillance based on Micro-Doppler Signatures
    Argueello, Alexis Gonzalez
    Berges, Dominic
    2018 15TH EUROPEAN RADAR CONFERENCE (EURAD), 2018, : 186 - 189
  • [39] Target detection for terahertz radar networks based on micro-Doppler signatures
    Li, Jin
    Pi, Yiming
    INTERNATIONAL JOURNAL OF SENSOR NETWORKS, 2015, 17 (02) : 115 - 121
  • [40] Deep Learning-Based Segmentation for the Extraction of Micro-Doppler Signatures
    Martinez, Javier
    Vossiek, Martin
    2018 15TH EUROPEAN RADAR CONFERENCE (EURAD), 2018, : 190 - 193