Oscillations and Synchronization in a System of Three Reactively Coupled Oscillators

被引:2
|
作者
Kuznetsov, Alexander P. [1 ]
Turukina, Ludmila V. [2 ]
Chernyshov, Nikolai Yu [3 ]
Sedova, Yuliya V. [1 ]
机构
[1] RAS, Saratov Branch, Kotelnikovs Inst Radioengn & Elect, Zelenaya 38, Saratov 410019, Russia
[2] Univ Potsdam, Dept Phys & Astron, D-14476 Potsdam, Germany
[3] Saratov NG Chernyshevskii State Univ, Astrachanskaya 83, Saratov 410012, Russia
来源
基金
俄罗斯基础研究基金会;
关键词
Synchronization; quasi-periodic oscillation; bifurcation; chaos; PHASE DYNAMICS; BIFURCATION; LOCKING; VAN; POL; CHIMERA; STATES;
D O I
10.1142/S0218127416500103
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a system of three interacting van der Pol oscillators with reactive coupling. Phase equations are derived, using proper order of expansion over the coupling parameter. The dynamics of the system is studied by means of the bifurcation analysis and with the method of Lyapunov exponent charts. Essential and physically meaningful features of the reactive coupling are discussed.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Forced synchronization of coupled oscillators
    Kitajima, H
    Noumi, Y
    Kousaka, T
    Kawakami, H
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1999, E82A (04) : 700 - 703
  • [42] On the synchronization of spatially coupled oscillators
    Cenedese, Angelo
    Favaretto, Chiara
    2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 4836 - 4841
  • [43] Exact solution at a transition to frequency synchronization of three coupled phase oscillators
    El-Nashar, Hassan F.
    CANADIAN JOURNAL OF PHYSICS, 2016, 94 (09) : 808 - 813
  • [44] Cluster synchronization in three-dimensional lattices of diffusively coupled oscillators
    Belykh, VN
    Belykh, IV
    Hasler, M
    Nevidin, KV
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (04): : 755 - 779
  • [45] On three oscillator universal probes for determining synchronization in arrays of coupled oscillators
    Wu, CW
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (10): : 2233 - 2238
  • [46] Mutual synchronization of oscillations in a system of coupled evolutionary games
    Vershinina, O. S.
    Ivanchenko, M. V.
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY-PRIKLADNAYA NELINEYNAYA DINAMIKA, 2023, 31 (05): : 610 - 621
  • [47] Partial synchronization and clustering in a system of diffusively coupled chaotic oscillators
    Yanchuk, S
    Maistrenko, Y
    Mosekilde, E
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2001, 54 (06) : 491 - 508
  • [48] Investigation of not-in-phase synchronization on coupled system of four oscillators
    Sekiya, H
    Yoshinaga, T
    Moro, S
    Mori, S
    Sasase, I
    ELECTRONICS AND COMMUNICATIONS IN JAPAN PART III-FUNDAMENTAL ELECTRONIC SCIENCE, 2002, 85 (02): : 1 - 12
  • [49] Frequency and wavelet based analyses of partial and complete measure synchronization in a system of three nonlinearly coupled oscillators
    De, Sadhitro
    Gupta, Shraddha
    Janaki, M. S.
    Iyengar, A. N. Sekar
    CHAOS, 2018, 28 (11)
  • [50] Synchronization of weakly coupled canard oscillators
    Ersoz, Elif Koksal
    Desroches, Mathieu
    Krupa, Martin
    PHYSICA D-NONLINEAR PHENOMENA, 2017, 349 : 46 - 61