Karhunen Loeve expansion and distribution of non-Gaussian process maximum

被引:7
|
作者
Poirion, Fabrice [1 ]
机构
[1] ONERA French Aerosp Lab, BP72,29 Ave Div Leclerc, F-92322 Chatillon, France
关键词
Extreme value distribution; Non-Gaussian; Non-stationary; Simulation; Random process; Rice's series;
D O I
10.1016/j.probengmech.2015.12.005
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this note we show that when a second order random process is modeled through its truncated Karhunen Loeve expansion and when the distribution of the random variables appearing in the expansion is approached by a Gaussian kernel, explicit relations for the mean number of up crossings, of the mean number of local maximums and more generally of Rice's moments can be derived in terms of Gaussian integrals. Several illustrations are given related to academic examples and natural hazards models. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:85 / 90
页数:6
相关论文
共 50 条
  • [31] Model reduction, centering, and the Karhunen-Loeve expansion
    Glavaski, S
    Marsden, JE
    Murray, RM
    PROCEEDINGS OF THE 37TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1998, : 2071 - 2076
  • [32] AUTOMATIC PHASE ALIGNMENT FOR THE KARHUNEN-LOEVE EXPANSION
    CHRISTENSEN, RA
    HIRSCHMAN, AD
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1979, 26 (02) : 94 - 99
  • [33] The maximum of the periodogram of a non-Gaussian sequence
    Davis, RA
    Mikosch, T
    ANNALS OF PROBABILITY, 1999, 27 (01): : 522 - 536
  • [34] KARHUNEN-LOEVE EXPANSION OF BURGERS MODEL OF TURBULENCE
    CHAMBERS, DH
    ADRIAN, RJ
    MOIN, P
    STEWART, DS
    SUNG, HJ
    PHYSICS OF FLUIDS, 1988, 31 (09) : 2573 - 2582
  • [35] Karhunen-Loeve expansion for a generalization of Wiener bridge
    Barczy, Matyas
    Lovas, Rezso L.
    LITHUANIAN MATHEMATICAL JOURNAL, 2018, 58 (04) : 341 - 359
  • [36] A generalization of the Karhunen-Loeve expansion of the Brownian bridge
    Pycke, JR
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 333 (07): : 685 - 688
  • [37] Data Sparse Computation of the Karhunen-Loeve Expansion
    Khoromskij, B. N.
    Litvinenko, A.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2008, 1048 : 311 - +
  • [38] ON NOISE REDUCTION IN THE KARHUNEN-LOEVE EXPANSION DOMAIN
    Benesty, Jacob
    Chen, Jingdong
    Huang, Yiteng
    2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 25 - +
  • [39] Karhunen-Loeve expansion for additive Brownian motions
    Liu, Jin V.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2013, 123 (11) : 4090 - 4110
  • [40] Karhunen-Loeve expansion for random earthquake excitations
    Jun, He
    EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION, 2015, 14 (01) : 77 - 84