Hyperbolic Linear Units for Deep Convolutional Neural Networks

被引:0
|
作者
Li, Jia [1 ]
Xu, Hua [1 ]
Deng, Junhui [1 ]
Sun, Xiaomin [1 ]
机构
[1] Tsinghua Univ, Dept Comp Sci & Technol, Tsinghua Natl Lab Informat Sci & Technol, State Key Lab Intelligent Technol & Syst, Beijing 100084, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, rectified linear units (ReLUs) have been used to solve the vanishing gradient problem. Their use has led to state-of-the-art results in various problems such as image classification. In this paper, we propose the hyperbolic linear units (HLUs) which not only speed up learning process in deep convolutional neural networks but also obtain better performance in image classification tasks. Unlike ReLUs, HLUs have inheriently negative values which could make mean unit outputs closer to zero. Mean unit outputs close to zero means we can speed up the learning process because they bring the normal gradient close to the natural gradient. Indeed, the difference called bias shift between natural gradient and the normal gradient is related to the mean activation of input units. Experiments with three popular CNN architectures, LeNet, Inception network and ResNet on various benchmarks including MNIST, CIFAR-10 and CIFAR-100 demonstrate that our proposed HLUs achieve significant improvement compared to other commonly used activation functions.
引用
收藏
页码:353 / 359
页数:7
相关论文
共 50 条
  • [31] Linear Computation Coding for Convolutional Neural Networks
    Mueller, Ralf R.
    Rosenberger, Hans
    Reichenbach, Marc
    2023 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP, SSP, 2023, : 562 - 565
  • [32] Elastography mapped by deep convolutional neural networks
    LIU DongXu
    KRUGGEL Frithjof
    SUN LiZhi
    Science China(Technological Sciences), 2021, (07) : 1567 - 1574
  • [33] Plug and Play Deep Convolutional Neural Networks
    Neary, Patrick
    Allan, Vicki
    PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE (ICAART), VOL 2, 2019, : 388 - 395
  • [34] An Efficient Accelerator for Deep Convolutional Neural Networks
    Kuo, Yi-Xian
    Lai, Yeong-Kang
    2020 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS - TAIWAN (ICCE-TAIWAN), 2020,
  • [35] Metaphase finding with deep convolutional neural networks
    Moazzen, Yaser
    Capar, Abdulkerim
    Albayrak, Abdulkadir
    Calik, Nurullah
    Toreyin, Behcet Ugur
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2019, 52 : 353 - 361
  • [36] Deep distributed convolutional neural networks: Universality
    Zhou, Ding-Xuan
    ANALYSIS AND APPLICATIONS, 2018, 16 (06) : 895 - 919
  • [37] Predicting enhancers with deep convolutional neural networks
    Min, Xu
    Zeng, Wanwen
    Chen, Shengquan
    Chen, Ning
    Chen, Ting
    Jiang, Rui
    BMC BIOINFORMATICS, 2017, 18
  • [38] Theory of deep convolutional neural networks: Downsampling
    Zhou, Ding-Xuan
    NEURAL NETWORKS, 2020, 124 : 319 - 327
  • [39] ImageNet Classification with Deep Convolutional Neural Networks
    Krizhevsky, Alex
    Sutskever, Ilya
    Hinton, Geoffrey E.
    COMMUNICATIONS OF THE ACM, 2017, 60 (06) : 84 - 90
  • [40] Structured Pruning of Deep Convolutional Neural Networks
    Anwar, Sajid
    Hwang, Kyuyeon
    Sung, Wonyong
    ACM JOURNAL ON EMERGING TECHNOLOGIES IN COMPUTING SYSTEMS, 2017, 13 (03)