Classification of multipartite entangled states by multidimensional determinants

被引:231
|
作者
Miyake, A
机构
[1] Univ Tokyo, Dept Phys, Grad Sch Sci, Bunkyo Ku, Tokyo 1130033, Japan
[2] JST, ERATO, Quantum Computat & Infomat Project, Bunkyo Ku, Tokyo 1130033, Japan
来源
PHYSICAL REVIEW A | 2003年 / 67卷 / 01期
关键词
D O I
10.1103/PhysRevA.67.012108
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We find that multidimensional determinants "hyperdeterminants," related to entanglement measures (the so-called concurrence, or 3-tangle for two or three qubits, respectively), are derived from a duality between entangled states and separable states. By means of the hyperdeterminant and its singularities, the single copy of multipartite pure entangled states is classified into an onion structure of every closed subset, similar to that by the local rank in the bipartite case. This reveals how inequivalent multipartite entangled classes are partially ordered under local actions. In particular, the generic entangled class of the maximal dimension, distinguished as the nonzero hyperdeterminant, does not include the maximally entangled states in Bell's inequalities in general (e.g., in the ngreater than or equal to4 qubits), contrary to the widely known bipartite or three-qubit cases. It suggests that not only are they never locally interconvertible with the majority of multipartite entangled states, but they would have no grounds for the canonical n-partite entangled states. Our classification is also useful for the mixed states.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Genuinely multipartite entangled states and orthogonal arrays
    Goyeneche, Dardo
    Zyczkowski, Karol
    PHYSICAL REVIEW A, 2014, 90 (02):
  • [22] Strong quantum nonlocality for multipartite entangled states
    Zhi-Chao Zhang
    Guo-Jing Tian
    Tian-Qing Cao
    Quantum Information Processing, 2021, 20
  • [23] Maximally Entangled Multipartite States: A Brief Survey
    Enriquez, M.
    Wintrowicz, I.
    Zyczkowski, K.
    QUANTUM FEST 2015, 2016, 698
  • [24] Simplex of bound entangled multipartite qubit states
    Hiesmayr, B. C.
    Hipp, F.
    Huber, M.
    Krammer, P.
    Spengler, Ch.
    PHYSICAL REVIEW A, 2008, 78 (04):
  • [25] Measures of entanglement in multipartite bound entangled states
    Wei, TC
    Altepeter, JB
    Goldbart, PM
    Munro, WJ
    PHYSICAL REVIEW A, 2004, 70 (02): : 022322 - 1
  • [26] TELEPORTATION OF THE MULTIPARTITE ENTANGLED STATES IN CONTINUOUS VARIABLE
    Qiao, Mian
    Sun, Yong
    Xia, Yun Jie
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2009, 7 (02) : 505 - 515
  • [27] Strong quantum nonlocality for multipartite entangled states
    Zhang, Zhi-Chao
    Tian, Guo-Jing
    Cao, Tian-Qing
    QUANTUM INFORMATION PROCESSING, 2021, 20 (10)
  • [28] Maximally Entangled Set of Multipartite Quantum States
    de Vicente, J. I.
    Spee, C.
    Kraus, B.
    PHYSICAL REVIEW LETTERS, 2013, 111 (11)
  • [29] Multipartite Entangled States in Dipolar Quantum Simulators
    Comparin, Tommaso
    Mezzacapo, Fabio
    Roscilde, Tommaso
    PHYSICAL REVIEW LETTERS, 2022, 129 (15)
  • [30] Composite geometric phase for multipartite entangled states
    Williamson, M. S.
    Vedral, V.
    PHYSICAL REVIEW A, 2007, 76 (03):