Oxidative stress-mediated alterations in histone post-translational modifications

被引:36
|
作者
Garcia-Gimenez, Jose-Luis [1 ,2 ,3 ]
Garces, Concepcion [1 ]
Roma-Mateo, Carlos [1 ,2 ,3 ]
Pallardo, Federico, V [1 ,2 ,3 ]
机构
[1] Univ Valencia, Fac Med & Dent, INCLIVA, Dept Physiol, Valencia 46010, Spain
[2] Associated Unit Rare Dis INCLIVA CIPF, Valencia, Spain
[3] CIBER Enfermedades Raras CIBERER, Valencia, Spain
关键词
Oxidative stress; Histones; Epigenetics; Chromatin; Cell cycle; PTM; Disease; BLOOD MONONUCLEAR-CELLS; HETEROCHROMATIN FOCI; REDOX HOMEOSTASIS; CANCER-CELLS; CYCLE ARREST; H2A HISTONE; CHROMATIN; GLUTATHIONE; H3; ACETYLATION;
D O I
10.1016/j.freeradbiomed.2021.02.027
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Epigenetic regulation of gene expression provides a finely tuned response capacity for cells when undergoing environmental changes. However, in the context of human physiology or disease, any cellular imbalance that modulates homeostasis has the potential to trigger molecular changes that result either in physiological adaptation to a new situation or pathological conditions. These effects are partly due to alterations in the functionality of epigenetic regulators, which cause long-term and often heritable changes in cell lineages. As such, free radicals resulting from unbalanced/extended oxidative stress have been proved to act as modulators of epigenetic agents, resulting in alterations of the epigenetic landscape. In the present review we will focus on the particular effect that oxidative stress and free radicals produce in histone post-translational modifications that contribute to altering the histone code and, consequently, gene expression. The pathological consequences of the changes in this epigenetic layer of regulation of gene expression are thoroughly evidenced by data gathered in many physiological adaptive processes and in human diseases that range from age-related neurodegenerative pathologies to cancer, and that include respiratory syndromes, infertility, and systemic inflammatory conditions like sepsis.
引用
收藏
页码:6 / 18
页数:13
相关论文
共 50 条
  • [21] Critical histone post-translational modifications for centromere function and propagation
    Fukagawa, Tatsuo
    CELL CYCLE, 2017, 16 (13) : 1259 - 1265
  • [23] An updated map of Trypanosoma cruzi histone post-translational modifications
    de Almeida, Rafael Fogaca
    Fernandes, Matheus
    de Godoy, Lyris Martins Franco
    SCIENTIFIC DATA, 2021, 8 (01)
  • [24] The impact of histone post-translational modifications on developmental gene regulation
    Cruickshank, Mark N.
    Besant, Paul
    Ulgiati, Daniela
    AMINO ACIDS, 2010, 39 (05) : 1087 - 1105
  • [25] Prediction of histone post-translational modifications using deep learning
    Baisya, Dipankar Ranjan
    Lonardi, Stefano
    BIOINFORMATICS, 2020, 36 (24) : 5610 - 5617
  • [26] The impact of histone post-translational modifications on developmental gene regulation
    Mark N. Cruickshank
    Paul Besant
    Daniela Ulgiati
    Amino Acids, 2010, 39 : 1087 - 1105
  • [27] Selenalysine as a Chemical Tool for Probing Histone Post-Translational Modifications
    Martin, Sandra Pinzon
    Mecinovic, Jasmin
    BIOCONJUGATE CHEMISTRY, 2025, 36 (03) : 510 - 520
  • [28] Histone post-translational modifications regulate autophagy flux and outcome
    Fullgrabe, Jens
    Klionsky, Daniel J.
    Joseph, Bertrand
    AUTOPHAGY, 2013, 9 (10) : 1621 - 1623
  • [29] The Study of the Chemical Synthesis and Preparation of Histone with Post-Translational Modifications
    Wang, Zhi-Peng
    Wang, Ye-Hai
    Chu, Guo-Chao
    Shi, Jing
    Li, Yi-Ming
    CURRENT ORGANIC SYNTHESIS, 2015, 12 (02) : 150 - 162
  • [30] Histone post-translational modifications — cause and consequence of genome function
    Gonzalo Millán-Zambrano
    Adam Burton
    Andrew J. Bannister
    Robert Schneider
    Nature Reviews Genetics, 2022, 23 : 563 - 580