Dispersive models describing mosquitoes' population dynamics

被引:3
|
作者
Yamashita, W. M. S. [1 ]
Takahashi, L. T. [1 ]
Chapiro, G. [1 ]
机构
[1] Univ Fed Juiz De Fora, BR-36036900 Juiz De Fora, MG, Brazil
关键词
D O I
10.1088/1742-6596/738/1/012065
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The global incidences of dengue and, more recently, zica virus have increased the interest in studying and understanding the mosquito population dynamics. Understanding this dynamics is important for public health in countries where climatic and environmental conditions are favorable for the propagation of these diseases. This work is based on the study of nonlinear mathematical models dealing with the life cycle of the dengue mosquito using partial differential equations. We investigate the existence of traveling wave solutions using semi-analytical method combining dynamical systems techniques and numerical integration. Obtained solutions are validated through numerical simulations using finite difference schemes.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] A model describing the population dynamics of Sitobion avenae and Coccinella septempunctata
    Skirvin, DJ
    Perry, JN
    Harrington, R
    ECOLOGICAL MODELLING, 1997, 96 (1-3) : 29 - 39
  • [22] A general modeling framework for describing spatially structured population dynamics
    Sample, Christine
    Fryxell, John M.
    Bieri, Joanna A.
    Federico, Paula
    Earl, Julia E.
    Wiederholt, Ruscena
    Mattsson, Brady J.
    Flockhart, D. T. Tyler
    Nicol, Sam
    Diffendorfer, Jay E.
    Thogmartin, Wayne E.
    Erickson, Richard A.
    Norris, D. Ryan
    ECOLOGY AND EVOLUTION, 2018, 8 (01): : 493 - 508
  • [23] Describing the dynamics of closed chemical systems by means of quasigradient models
    Bykov, V. I.
    Starostin, I. E.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A, 2013, 87 (05) : 724 - 729
  • [24] Physical principles and models describing intracellular virus particle dynamics
    Lagache, T.
    Dauty, E.
    Holcman, D.
    CURRENT OPINION IN MICROBIOLOGY, 2009, 12 (04) : 439 - 445
  • [25] Describing the dynamics of closed chemical systems by means of quasigradient models
    V. I. Bykov
    I. E. Starostin
    Russian Journal of Physical Chemistry A, 2013, 87 : 724 - 729
  • [26] STOCHASTIC MODELS OF POPULATION DYNAMICS
    NEYMAN, J
    SCOTT, EL
    SCIENCE, 1959, 130 (3371) : 303 - 308
  • [27] Models of Viral Population Dynamics
    Padmanabhan, Pranesh
    Dixit, Narendra M.
    QUASISPECIES: FROM THEORY TO EXPERIMENTAL SYSTEMS, 2016, 392 : 277 - 302
  • [28] Approach for describing spatial dynamics of quantum light-matter interaction in dispersive dissipative media
    Zyablovsky, A. A.
    Andrianov, E. S.
    Nechepurenko, I. A.
    Dorofeenko, A. V.
    Pukhov, A. A.
    Vinogradov, A. P.
    PHYSICAL REVIEW A, 2017, 95 (05)
  • [29] Bacterial associations reveal spatial population dynamics in Anopheles gambiae mosquitoes
    Moritz Buck
    Louise K. J. Nilsson
    Carl Brunius
    Roch K. Dabiré
    Richard Hopkins
    Olle Terenius
    Scientific Reports, 6
  • [30] Bacterial associations reveal spatial population dynamics in Anopheles gambiae mosquitoes
    Buck, Moritz
    Nilsson, Louise K. J.
    Brunius, Carl
    Dabire, Roch K.
    Hopkins, Richard
    Terenius, Olle
    SCIENTIFIC REPORTS, 2016, 6