Impact of Fibres on the Mechanical and Durable Behaviour of Fibre-Reinforced Concrete

被引:29
|
作者
More, Florence More Dattu Shanker [1 ]
Subramanian, Senthil Selvan [1 ]
机构
[1] SRMIST, Dept Civil Engn, Maraimalai Nagar 603203, Kattankulathur, India
关键词
natural fibres; durability; energy absorption; fibre content; crack arrestor; microstructural analysis; HIGH-STRENGTH CONCRETE; DYNAMIC INCREASE FACTOR; WHEAT-STRAW ASH; STEEL FIBER; POLYPROPYLENE FIBER; MICROSTRUCTURAL PROPERTIES; DURABILITY PROPERTIES; GLASS; CEMENT; TOUGHNESS;
D O I
10.3390/buildings12091436
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Numerous studies have been conducted recently on fibre reinforced concrete (FRC), a material that is frequently utilized in the building sector. The utilization of FRC has grown in relevance recently due to its enhanced mechanical qualities over normal concrete. Due to increased environmental degradation in recent years, natural fibres were developed and research is underway with the goal of implementing them in the construction industry. In this work, several natural and artificial fibres, including glass, carbon, steel, jute, coir, and sisal fibres are used to experimentally investigate the mechanical and durability properties of fibre-reinforced concrete. The fibres were added to the M40 concrete mix with a volumetric ratio of 0%, 0.5%, 1.0%, 1.5%, 2.0% and 2.5%. The compressive strength of the conventional concrete and fibre reinforced concrete with the addition of 1.5% steel, 1.5% carbon, 1.0% glass, 2.0% coir, 1.5% jute and 1.5% sisal fibres were 4.2 N/mm(2), 45.7 N/mm(2), 41.5 N/mm(2), 45.7 N/mm(2), 46.6 N/mm(2), 45.7 N/mm(2) and 45.9 N/mm(2), respectively. Comparing steel fibre reinforced concrete to regular concrete results in a 13.69% improvement in compressive strength. Similarly, the compressive strengths were increased by 3.24%, 13.69%, 15.92%, 13.68% and 14.18% for carbon, glass, coir, jute, and sisal fibre reinforced concrete respectively when equated with plain concrete. With the optimum fraction of fibre reinforced concrete, mechanical and durability qualities were experimentally investigated. A variety of durability conditions, including the Rapid Chloride Permeability Test, water absorption, porosity, sorptivity, acid attack, alkali attack, and sulphate attack, were used to study the behaviour of fiber reinforced concrete. When compared to conventional concrete, natural fibre reinforced concrete was found to have higher water absorption and sorptivity. The rate of acid and chloride attacks on concrete reinforced with natural fibres was significantly high. The artificial fibre reinforced concrete was found to be more efficient than the natural fibre reinforced concrete. The load bearing capacity, anchorage and the ductility of the concrete improved with the addition of fibres. According to the experimental findings, artificial fibre reinforced concrete can be employed to increase the structure's strength and longevity as well as to postpone the propagation of cracks. A microstructural analysis of concrete was conducted to ascertain its morphological characteristics.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Data on acoustic behaviour of coconut fibre-reinforced concrete
    Olukunle, Bamigboye Gideon
    Ben Uche, Ngene
    Efomo, Apata Odera
    Gideon, Adeyemi
    Joshua, Jolayemi Kayode
    DATA IN BRIEF, 2018, 21 : 1004 - 1007
  • [22] Characterising the shear behaviour of steel fibre-reinforced concrete
    Zeranka, S.
    van Zijl, G. P. A. G.
    COMPUTATIONAL MODELLING OF CONCRETE STRUCTURES. EURO-C 2018, 2018, : 605 - 614
  • [23] Triaxial mechanical behaviour of hybrid basalt–polypropylene fibre-reinforced concrete: The effect of micro-fibres at multi scale levels
    Qiang Fu
    Mengxin Bu
    Li Su
    Lei Liu
    Lou Chen
    Ning Li
    Ditao Niu
    Materials and Structures, 2021, 54
  • [24] Mechanical characteristics and flexural behaviour of fibre-reinforced cementitious composite containing PVA and basalt fibres
    ZHI PIN LOH
    KIM HUNG MO
    CHEE GHUAN TAN
    SHIH HORNG YEO
    Sādhanā, 2019, 44
  • [25] Mechanical characteristics and flexural behaviour of fibre-reinforced cementitious composite containing PVA and basalt fibres
    Loh, Zhi Pin
    Mo, Kim Hung
    Tan, Chee Ghuan
    Yeo, Shih Horng
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2019, 44 (04): : 1 - 9
  • [26] Discussion: Mechanical properties of hybrid fibre-reinforced concrete - analytical modelling and experimental behaviour
    Abadel, Aref
    Abbas, Husain
    Almusallam, Tarek
    Al-Salloum, Yousef
    Siddiqui, Nadeem
    Shubaili, Mohammed A.
    Sallam, Hossam El-Din M.
    MAGAZINE OF CONCRETE RESEARCH, 2016, 68 (22) : 1183 - 1186
  • [27] Dynamic compressive mechanical behaviour and modelling of basalt-polypropylene fibre-reinforced concrete
    Fu, Qiang
    Niu, Ditao
    Zhang, Jian
    Huang, Daguan
    Wang, Yan
    Hong, Mengshu
    Zhang, Lu
    ARCHIVES OF CIVIL AND MECHANICAL ENGINEERING, 2018, 18 (03) : 914 - 927
  • [28] Mechanical Properties of Macro Polypropylene Fibre-Reinforced Concrete
    Abousnina, Rajab
    Premasiri, Sachindra
    Anise, Vilive
    Lokuge, Weena
    Vimonsatit, Vanissorn
    Ferdous, Wahid
    Alajarmeh, Omar
    POLYMERS, 2021, 13 (23)
  • [29] Investigation of Mechanical Properties of Steel Fibre-Reinforced Concrete
    Ryabchikov, A.
    Tamme, V.
    Laurson, M.
    2ND INTERNATIONAL CONFERENCE ON INNOVATIVE MATERIALS, STRUCTURES AND TECHNOLOGIES, 2015, 96
  • [30] Fundamental mechanics that govern the flexural behaviour of reinforced concrete beams with fibre-reinforced concrete
    Visintin, Phillip
    Oehlers, Deric J.
    ADVANCES IN STRUCTURAL ENGINEERING, 2018, 21 (07) : 1088 - 1102