Kernelization of the 3-path vertex cover problem

被引:3
|
作者
Brause, Christoph [1 ]
Schiermeyer, Ingo [1 ]
机构
[1] Tech Univ Bergakad Freiberg, Inst Discrete Math & Algebra, Pruferstr 1, D-09599 Freiberg, Germany
关键词
k-path vertex cover; Vertex cover; Kernelization; Crown reduction; P-3; PROBLEM; APPROXIMATION ALGORITHM; GRAPHS;
D O I
10.1016/j.disc.2015.12.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The 3-path vertex cover problem is an extension of the well-known vertex cover problem. It asks for a vertex set S subset of V(G) of minimum cardinality such that G - S only contains independent vertices and edges. In this paper we will present a polynomial algorithm which computes two disjoint sets T-1, T-2 of vertices of G such that (i) for any 3-path vertex cover S' in G[T-2], S' U T-1 is a 3-path vertex cover in G, (ii) there exists a minimum 3-path vertex cover in G which contains T-1 and (iii) vertical bar T-2 vertical bar <= 6 . psi(3)(G[T-2]), where psi(3)(G) is the cardinality of a minimum 3-path vertex cover and T-2 is the kernel of G. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:1935 / 1939
页数:5
相关论文
共 50 条
  • [21] On the weighted k-path vertex cover problem
    Bresar, B.
    Krivos-Bellus, R.
    Semanisin, G.
    Sparl, P.
    DISCRETE APPLIED MATHEMATICS, 2014, 177 : 14 - 18
  • [22] A Survey on the k-Path Vertex Cover Problem
    Tu, Jianhua
    AXIOMS, 2022, 11 (05)
  • [23] An improved approximation algorithm for the minimum 3-path partition problem
    Yong Chen
    Randy Goebel
    Guohui Lin
    Bing Su
    Yao Xu
    An Zhang
    Journal of Combinatorial Optimization, 2019, 38 : 150 - 164
  • [24] Fast, Effective Vertex Cover Kernelization: A Tale of Two Algorithms
    Abu-Khzam, Faisal N.
    Langston, Michael A.
    Suters, W. Henry
    3RD ACS/IEEE INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS, 2005, 2005,
  • [25] Complexity of the Maximum k-Path Vertex Cover Problem
    Miyano, Eiji
    Saitoh, Toshiki
    Uehara, Ryuhei
    Yagita, Tsuyoshi
    van der Zanden, Tom C.
    WALCOM: ALGORITHMS AND COMPUTATION, WALCOM 2018, 2018, 10755 : 240 - 251
  • [26] Complexity of the Maximum k-Path Vertex Cover Problem
    Miyano, Eiji
    Saitoh, Toshiki
    Uehara, Ryuhei
    Yagita, Tsuyoshi
    van der Zanden, Tom C.
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2020, E103A (10) : 1193 - 1201
  • [27] An improved approximation algorithm for the minimum 3-path partition problem
    Chen, Yong
    Goebel, Randy
    Lin, Guohui
    Su, Bing
    Xu, Yao
    Zhang, An
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2019, 38 (01) : 150 - 164
  • [28] Planar 3-Path Graphs
    Byers, Alexis
    Olejniczak, Drake
    Zayed, Mohra
    Zhang, Ping
    ARS COMBINATORIA, 2020, 149 : 279 - 297
  • [29] Vertex Cover Kernelization Revisited: Upper and Lower Bounds for a Refined Parameter
    Jansen, Bart M. P.
    Bodlaender, Hans L.
    28TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2011), 2011, 9 : 177 - 188
  • [30] Stackelberg Vertex Cover on a Path
    Eickhoff, Katharina
    Kauther, Lennart
    Peis, Britta
    ALGORITHMIC GAME THEORY, SAGT 2023, 2023, 14238 : 22 - 39