Perturbative 2-body parent Hamiltonians for projected entangled pair states

被引:3
|
作者
Brell, Courtney G. [1 ,2 ]
Bartlett, Stephen D. [1 ]
Doherty, Andrew C. [1 ]
机构
[1] Univ Sydney, Sch Phys, Ctr Engn Quantum Syst, Sydney, NSW 2006, Australia
[2] Leibniz Univ Hannover, Inst Theoret Phys, D-30167 Hannover, Germany
来源
NEW JOURNAL OF PHYSICS | 2014年 / 16卷
关键词
projected entangled pair state; topological order; parent Hamiltonian; QUANTUM; STABILITY; SYSTEMS; COMPLEXITY; LATTICE; ANYONS;
D O I
10.1088/1367-2630/16/12/123056
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct parent Hamiltonians involving only local 2-body interactions for a broad class of projected entangled pair states (PEPS). Making use of perturbation gadget techniques, we define a perturbative Hamiltonian acting on the virtual PEPS space with a finite order low energy effective Hamiltonian that is a gapped, frustration-free parent Hamiltonian for an encoded version of a desired PEPS. For topologically ordered PEPS, the ground space of the low energy effective Hamiltonian is shown to be in the same phase as the desired state to all orders of perturbation theory. An encoded parent Hamiltonian for the double semion string net ground state is explicitly constructed as a concrete example.
引用
收藏
页数:34
相关论文
共 50 条
  • [21] Finite projected entangled pair states for the Hubbard model
    Scheb, M.
    Noack, R. M.
    PHYSICAL REVIEW B, 2023, 107 (16)
  • [22] Scaling Hypothesis for Projected Entangled-Pair States
    Vanhecke, Bram
    Hasik, Juraj
    Verstraete, Frank
    Vanderstraeten, Laurens
    PHYSICAL REVIEW LETTERS, 2022, 129 (20)
  • [23] Mathematical open problems in projected entangled pair states
    Juan Ignacio Cirac
    José Garre-Rubio
    David Pérez-García
    Revista Matemática Complutense, 2019, 32 : 579 - 599
  • [24] Mathematical open problems in projected entangled pair states
    Cirac, Juan Ignacio
    Garre-Rubio, Jose
    Perez-Garcia, David
    REVISTA MATEMATICA COMPLUTENSE, 2019, 32 (03): : 579 - 599
  • [25] Fermionic implementation of projected entangled pair states algorithm
    Pizorn, Iztok
    Verstraete, Frank
    PHYSICAL REVIEW B, 2010, 81 (24):
  • [26] Preparing topological projected entangled pair states on a quantum computer
    Schwarz, Martin
    Temme, Kristan
    Verstraete, Frank
    Perez-Garcia, David
    Cubitt, Toby S.
    PHYSICAL REVIEW A, 2013, 88 (03):
  • [27] Projected Entangled Pair States: Fundamental Analytical and Numerical Limitations
    Scarpa, G.
    Molnar, A.
    Ge, Y.
    Garcia-Ripoll, J. J.
    Schuch, N.
    Perez-Garcia, D.
    Iblisdir, S.
    PHYSICAL REVIEW LETTERS, 2020, 125 (21)
  • [28] Automatic differentiation applied to excitations with projected entangled pair states
    Ponsioen, Boris
    Assaad, Fakher F.
    Corboz, Philippe
    SCIPOST PHYSICS, 2022, 12 (01):
  • [29] Spectral functions with infinite projected entangled-pair states
    Espinoza, Juan Diego Arias
    Corboz, Philippe
    PHYSICAL REVIEW B, 2024, 110 (09)
  • [30] Simulating excitation spectra with projected entangled-pair states
    Vanderstraeten, Laurens
    Haegeman, Jutho
    Verstraete, Frank
    PHYSICAL REVIEW B, 2019, 99 (16)