Time and Computation Efficient Malicious Android Application Detection Using Machine Learning Techniques

被引:0
|
作者
Saqlain, Sabbir Ahmed [1 ]
Bin Mahamud, Navid [1 ]
Paul, Mahit Kumar [1 ]
Sattar, A. H. M. Sarowar [1 ]
机构
[1] Rajshahi Univ Engn & Technol, Dept Comp Sci & Engn, Rajshahi, Bangladesh
关键词
Malware; Android; ML; PCA; Random Forest; Malicious Applications;
D O I
10.1109/icaee48663.2019.8975540
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Malware has become one of the major threats to information security in this rapid growth of internet applications. This has led the researchers to develop distinguished methods for detecting malware in this respect. To address the issue, machine learning techniques have proven itself efficient in detecting malware. But one of the major challenges is the reduction of attributes or components that are less important in malware detection process. Applying Principal Component Analysis (PCA) with other machine learning techniques, successful reduction of components is possible without any alternation in detection accuracy. In this paper, an approach based on PCA has been proposed which is time and computation efficient in detecting malware than the existing ADROIT approach that doesn't use PCA. Experimental results have also shown the best suited approach for further development in dynamic malware detection process.
引用
收藏
页码:536 / 540
页数:5
相关论文
共 50 条
  • [31] Android botnet detection using machine learning
    Rasheed M.M.
    Faieq A.K.
    Hashim A.A.
    Rasheed, Mohammad M. (mohammad.rasheed@uoitc.edu.iq), 1600, International Information and Engineering Technology Association (25): : 127 - 130
  • [32] Application of Machine Learning Algorithms for Android Malware Detection
    Kakavand, Mohsen
    Dabbagh, Mohammad
    Dehghantanha, Ali
    2018 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND INTELLIGENT SYSTEMS (CIIS 2018), 2018, : 32 - 36
  • [33] Malicious URL and Intrusion Detection using Machine Learning
    Hamza, Amr
    Hammam, Farah
    Abouzeid, Medhat
    Ahmed, Mohammad Arsalan
    Dhou, Salam
    Aloul, Fadi
    38TH INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING, ICOIN 2024, 2024, : 795 - 800
  • [34] A Comprehensive Survey on Machine Learning Techniques for Android Malware Detection
    Kouliaridis, Vasileios
    Kambourakis, Georgios
    INFORMATION, 2021, 12 (05)
  • [35] Android Malware Detection through Machine Learning Techniques: A Review
    Abikoye, Oluwakemi Christiana
    Gyunka, Benjamin Aruwa
    Akande, Oluwatobi Noah
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2020, 16 (02) : 14 - 30
  • [36] Malicious Query Recognition Using Chosen Machine Learning Techniques
    Comfort Yetunde Daramola
    Samson Adebisi Akinpelu
    Ezekiel Olajuwon Akinyemi
    Sunday Adeola Ajagbe
    Gabriel Akinyemi Akinpelu
    Mathew Olusegun Adigun
    SN Computer Science, 6 (3)
  • [37] Detecting malicious IoT traffic using Machine Learning techniques
    Jayaraman, Bhuvana
    Thai, Mirnalinee T. H. A. N. G. A. N. A. D. A. R. T. H. A. N. G. A.
    Anand, Anirudh
    Nadar, Sri Sivasubramaniya
    ROMANIAN JOURNAL OF INFORMATION TECHNOLOGY AND AUTOMATIC CONTROL-REVISTA ROMANA DE INFORMATICA SI AUTOMATICA, 2023, 33 (04): : 47 - 58
  • [38] Web Application Attacks Detection Using Machine Learning Techniques
    Betarte, Gustavo
    Martinez, Rodrigo
    Pardo, Alvaro
    2018 17TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2018, : 1065 - 1072
  • [39] Permission-Based Malware Detection System for Android Using Machine Learning Techniques
    Arslan, Recep Sinan
    Dogru, Ibrahim Alper
    Barisci, Necaattin
    INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING, 2019, 29 (01) : 43 - 61
  • [40] Applying machine learning techniques for detection of malicious code in network traffic
    Elovici, Yuval
    Shabtai, Asaf
    Moskovitch, Robert
    Tahan, Gil
    Glezer, Chanan
    KI 2007: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2007, 4667 : 44 - +