SPACELIKE S-WILLMORE SPHERES IN LORENTZIAN SPACE FORMS

被引:3
|
作者
Wang, Peng [1 ]
机构
[1] Tongji Univ, Dept Math, Shanghai 200092, Peoples R China
关键词
spacelike S-Willmore surfaces; spacelike S-Willmore sphere; stationary surfaces; duality theorem; SURFACES; GEOMETRY; DUALITY;
D O I
10.2140/pjm.2010.246.495
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that spacelike S-Willmore surfaces are the only spacelike Willmore surfaces with a duality in Lorentzian space forms. We obtain a classification of S-Willmore spheres in Lorentzian conformal space forms. Such a sphere must be congruent to either a complete spacelike stationary ((H) over right arrow = 0) surface in R-1(n); a super-Willmore sphere in S2m+2; or a polar transform of a (j - 1)-isotropic complete spacelike stationary ((H) over right arrow - 0) surface in R-1(2j+2). We also show that all Willmore spheres in Q(1)(4) are conformal to a complete spacelike stationary surface in R-1(4).
引用
收藏
页码:495 / 510
页数:16
相关论文
共 50 条
  • [31] Willmore Lagrangian Spheres in the Complex Euclidean Space Cn
    Zejun Hu
    Haizhong Li
    Annals of Global Analysis and Geometry, 2004, 25 : 73 - 98
  • [32] Willmore Lagrangian spheres in the complex Euclidean space Cn
    Hu, ZJ
    Li, HZ
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2004, 25 (01) : 73 - 98
  • [33] Time-like Willmore surfaces in Lorentzian 3-space
    DENG Yanjuan & WANG Changping LMAM
    Science in China(Series A:Mathematics), 2006, (01) : 75 - 85
  • [34] Time-like willmore surfaces in Lorentzian 3-space
    Deng, YJ
    Wang, CP
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2006, 49 (01): : 75 - 85
  • [35] Time-like Willmore surfaces in Lorentzian 3-space
    Yanjuan Deng
    Changping Wang
    Science in China Series A, 2006, 49 : 75 - 85
  • [36] F-Willmore submanifold in space forms
    Jin Liu
    Huaiyu Jian
    Frontiers of Mathematics in China, 2011, 6 : 871 - 886
  • [37] F-Willmore submanifold in space forms
    Liu, Jin
    Jian, Huaiyu
    FRONTIERS OF MATHEMATICS IN CHINA, 2011, 6 (05) : 871 - 886
  • [38] Spacelike Möbius Hypersurfaces in Four Dimensional Lorentzian Space Form
    Yan Bin Lin
    Ying Lü
    Chang Ping Wang
    Acta Mathematica Sinica, English Series, 2019, 35 : 519 - 536
  • [39] On the umbilicity of generalized linear Weingarten spacelike hypersurfaces in a Lorentzian space form
    Aquino, Cicero P.
    Batista, Mamba
    de Lima, Henrique F.
    JOURNAL OF GEOMETRY AND PHYSICS, 2019, 137 : 228 - 236
  • [40] The slant helices according to bishop frame of the spacelike curve in Lorentzian space
    Bukcu, Bahaddin
    Karacan, Murat Kemal
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2009, 12 (05) : 691 - 700