Flexural Properties and Low-Velocity Impact Behavior of Polyamide 11/Basalt Fiber Fabric Laminates

被引:13
|
作者
Vitiello, Libera [1 ]
Russo, Pietro [2 ]
Papa, Ilaria [1 ]
Lopresto, Valentina [1 ]
Mocerino, Davide [1 ]
Filippone, Giovanni [1 ]
机构
[1] Univ Naples Federico II, Dept Chem Mat & Prod Engn, Piazzale Tecchio 80, I-80125 Naples, Italy
[2] Natl Council Res, Inst Polymers Composites & Biomat, I-80078 Naples, Italy
关键词
polyamide; 11; basalt fiber; biocomposite; flexural properties; low-velocity impact;
D O I
10.3390/polym13071055
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Environmentally friendly composite plates intended for load-bearing applications were prepared and systematically characterized in terms of mechanical performances and morphological features. Sample plates combining two extrusion grades of bio-polyamide 11, one of which is plasticized, and two basalt fiber fabrics (plain weave and twill architectures) were obtained by film stacking and hot pressing, and their mechanical properties were investigated by quasi-static flexural and low-velocity impact tests. The comparative analysis of the results, also interpreted by the bending damage analysis, through optical microscope observations, and impact damage analysis through visual inspection and indentation measurements demonstrate that, besides interfacial adhesion issues, the mechanical performance of the laminates need to be optimized through a careful selection of the constituents in the light of the final application. In particular, if the goal is a gain in impact strength, the use of the plasticized matrix is beneficial, but it brings about a loss in stiffness and strength that can be partially compensated by properly selecting a more performing fiber fabric architecture. The latter must also be easily permeated by the matrix to enhance the efficiency of stress transfer from the matrix. Overall, our results can be exploited for the development of bio-composites for particularly demanding applications.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Low-velocity impact behavior and residual tensile strength of CFRP laminates
    Zhou, Jianwu
    Liao, Binbin
    Shi, Yaoyao
    Zuo, Yangjie
    Tuo, Hongliang
    Jia, Liyong
    COMPOSITES PART B-ENGINEERING, 2019, 161 : 300 - 313
  • [22] Effect of Stacking Sequence on Low-Velocity Impact Behavior of Metal Laminates
    H. Khoramishad
    M. Bagheri Tofighi
    M. Khodaei
    Physical Mesomechanics, 2018, 21 : 140 - 149
  • [23] Low-velocity impact behavior and residual tensile strength of composite laminates
    Guan Q.
    Feng J.
    Xia P.
    Wu G.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2021, 47 (06): : 1220 - 1232
  • [24] Effect of basalt fiber hybridization on the impact behavior under low impact velocity of glass/basalt woven fabric/epoxy resin composites
    Sarasini, Fabrizio
    Tirillo, Jacopo
    Valente, Marco
    Valente, Teodoro
    Cioffi, Salvatore
    Iannace, Salvatore
    Sorrentino, Luigi
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2013, 47 : 109 - 123
  • [25] An experimental investigation on the effect of incorporating graphene nanoplatelets on the low-velocity impact behavior of fiber metal laminates
    Fathi, Azadeh
    Liaghat, Gholamhossein
    Sabouri, Hadi
    THIN-WALLED STRUCTURES, 2021, 167
  • [26] Effects of Fiber Architectures on the Impact Resistance of Composite Laminates Under Low-Velocity Impact
    Bian, Tianya
    Lyu, Qihui
    Fan, Xiaobin
    Zhang, Xiaomei
    Li, Xiang
    Guo, Zaoyang
    APPLIED COMPOSITE MATERIALS, 2022, 29 (03) : 1125 - 1145
  • [27] Effects of Fiber Architectures on the Impact Resistance of Composite Laminates Under Low-Velocity Impact
    Tianya Bian
    Qihui Lyu
    Xiaobin Fan
    Xiaomei Zhang
    Xiang Li
    Zaoyang Guo
    Applied Composite Materials, 2022, 29 : 1125 - 1145
  • [28] Damage behaviors of woven basalt-unsaturated polyester laminates under low-velocity impact
    Gideon, Rotich K.
    Zhang, Fa
    Wu, Liwei
    Sun, Baozhong
    Gu, Bohong
    JOURNAL OF COMPOSITE MATERIALS, 2015, 49 (17) : 2103 - 2118
  • [29] Numerical Study of the Damage Behavior of Carbon Fiber/Glass Fiber Hybrid Composite Laminates under Low-velocity Impact
    Zhang, Chenxu
    Huang, Jia
    Li, Xi
    Zhang, Chao
    FIBERS AND POLYMERS, 2020, 21 (12) : 2873 - 2887
  • [30] LOW-VELOCITY IMPACT DAMAGE IN GRAPHITE-FIBER REINFORCED EPOXY LAMINATES
    RHODES, MD
    WILLIAMS, JG
    STARNES, JH
    POLYMER COMPOSITES, 1981, 2 (01) : 36 - 44