Analysis of high-level dance movements under deep learning and internet of things

被引:6
|
作者
Wang, Shan [1 ]
Tong, Shusheng [1 ]
机构
[1] Guangzhou Univ, Coll Mus & Dance, Guangzhou 510006, Peoples R China
来源
JOURNAL OF SUPERCOMPUTING | 2022年 / 78卷 / 12期
关键词
Deep learning; Internet of Things; Biological image visualization technology; Dance movements; VISUALIZATION;
D O I
10.1007/s11227-022-04454-y
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The purpose is to improve the design effect of high-level dance movements and help dancers to better master these movements. The body changes with advanced dance movements based on deep learning (DL) algorithm and Internet of Things (IoT) technology are analyzed to promote the practical application of biological image visualization technology. Firstly, DL is applied for image recognition, and secondly, the technical architecture of IoT technology is constructed. Finally, DL and IoT-edge computing (IoT-EC) are employed to establish the network structure of the dance generation model. The experimental results indicate that IoT-EC based on DL significantly enhances the efficiency of resource allocation and effectively reduces the server processing time. For 200 tasks in the workspace, deep reinforcement learning can be optimized in only 8 s. When there are 800 tasks in some workspaces, the edge server takes 21 s to optimize deep reinforcement learning (DRL). Besides, this scheme can control the energy consumption of the server in the calculation process while dramatically reducing the average waiting time. The application of these technologies in the dance movement has extensively promoted the progress and development of the dance industry. The present work provides references DL in image recognition and remote sensing image classification.
引用
收藏
页码:14294 / 14316
页数:23
相关论文
共 50 条
  • [41] Fog-Embedded Deep Learning for the Internet of Things
    Lyu, Lingjuan
    Bezdek, James C.
    He, Xuanli
    Jin, Jiong
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2019, 15 (07) : 4206 - 4215
  • [42] On deep reinforcement learning security for Industrial Internet of Things
    Liu, Xing
    Yu, Wei
    Liang, Fan
    Griffith, David
    Golmie, Nada
    COMPUTER COMMUNICATIONS, 2021, 168 : 20 - 32
  • [43] DeepThink IoT: The Strength of Deep Learning in Internet of Things
    Thakur, Divyansh
    Saini, Jaspal Kaur
    Srinivasan, Srikant
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (12) : 14663 - 14730
  • [44] Toward Deep Transfer Learning in Industrial Internet of Things
    Liu, Xing
    Yu, Wei
    Liang, Fan
    Griffith, David
    Golmie, Nada
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (15) : 12163 - 12175
  • [45] Federated deep learning for anomaly detection in the internet of things
    Wang, Xiaofeng
    Wang, Yonghong
    Javaheri, Zahra
    Almutairi, Laila
    Moghadamnejad, Navid
    Younes, Osama S.
    COMPUTERS & ELECTRICAL ENGINEERING, 2023, 108
  • [46] Robotized application based on deep learning and Internet of Things
    Pascal, Carlos
    Raveica, Laura-Ofelia
    Panescu, Doru
    2018 22ND INTERNATIONAL CONFERENCE ON SYSTEM THEORY, CONTROL AND COMPUTING (ICSTCC), 2018, : 646 - 651
  • [47] Internet of Things Security Analytics and Solutions with Deep Learning
    Holbrook, Luke
    Alamaniotis, Miltiadis
    2019 IEEE 31ST INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2019), 2019, : 178 - 185
  • [48] Deep Learning for Detection of Routing Attacks in the Internet of Things
    Furkan Yusuf Yavuz
    Devrim Ünal
    Ensar Gül
    International Journal of Computational Intelligence Systems, 2018, 12 : 39 - 58
  • [49] Connecting Low-Level Image Processing and High-Level Vision via Deep Learning
    Liu, Ding
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 5775 - 5776
  • [50] FPGA Design of Transposed Convolutions for Deep Learning Using High-Level Synthesis
    Sestito, Cristian
    Perri, Stefania
    Stewart, Robert
    JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2023, 95 (10): : 1245 - 1263