Research on point-cloud collection and 3D model reconstruction

被引:0
|
作者
Sheng, Jianan [1 ]
Zhang, Jian [1 ]
Mi, Hong [2 ]
Ye, Maosheng [3 ]
机构
[1] Tongji Univ, Sch Mech Engn, Shanghai, Peoples R China
[2] LIANZHOU REFRIGERANTS CO LTD, Quzhou, Zhejiang, Peoples R China
[3] GAOMING ANNWA CERAM SANIT WARE CO LTD, Guangzhou, Peoples R China
基金
国家重点研发计划;
关键词
point-cloud collection; 3D model reconstruction; multi-line structured light; SHAPE; CALIBRATION;
D O I
10.1109/iecon43393.2020.9255086
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Point-cloud collection is used to collect 3D surface features from the object. 3D reconstruction can form a visual 3D model based on point- cloud. They are the important parts of 3D surface measurement. 3D surface measurement can effectively help enterprises shorten the design cycle, improve product quality, save labor costs, and improve the competitiveness of enterprises. Optical image measurement is a branch of 3D surface measurement. Because optical image measurement has the advantages of non-contact, high speed, high degree of automation and good flexibility, it has been researched and applied widely. Image processing and calibration technology are often used in optical image measurement. Image processing can extract valuable information from images, and calibration technology is necessary for mathematical model. Multi-line structured light has been widely used in the measurement.
引用
收藏
页码:5331 / 5336
页数:6
相关论文
共 50 条
  • [41] Error Metric Model for 3D Point Cloud Reconstruction Based on Binocular Vision
    Bian, Yuxia
    Liu, Xuejun
    Zhang, Xingguo
    2017 10TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI), 2017,
  • [42] 3D SURFACE RECONSTRUCTION OF BODY FROM POINT CLOUD
    Li, Xiaojiu
    Li, Xiaozhi
    ITC&DC: 5TH INTERNATIONAL TEXTILE, CLOTHING & DESIGN CONFERENCE 2010, BOOK OF PROCEEDINGS: MAGIC WORLD OF TEXTILES, 2010, : 470 - 475
  • [43] Commodity 3D Display based on Point Cloud Reconstruction
    Fu, Yujie
    Jia, Tong
    Song, Zhaozhan
    Peng, Bo
    PROCEEDINGS OF THE 30TH CHINESE CONTROL AND DECISION CONFERENCE (2018 CCDC), 2018, : 5617 - 5622
  • [44] Adaptive reconstruction of 3D point cloud by sparse optimization
    Feng X.-W.
    Hu H.-Y.
    Zhuang R.-Q.
    He M.
    Feng, Xiao-Wei (xwfeng1982@163.com), 2021, Chinese Academy of Sciences (29): : 2495 - 2503
  • [45] 3D Point Cloud on Semantic Information for Wheat Reconstruction
    Yang, Yuhang
    Zhang, Jinqian
    Wu, Kangjie
    Zhang, Xixin
    Sun, Jun
    Peng, Shuaibo
    Li, Jun
    Wang, Mantao
    AGRICULTURE-BASEL, 2021, 11 (05):
  • [46] POINT CLOUD DEFORMATION FOR SINGLE IMAGE 3D RECONSTRUCTION
    Choi, Seonghwa
    Anh-Duc Nguyen
    Kim, Jinwoo
    Ahn, Sewoong
    Lee, Sanghoon
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 2379 - 2383
  • [47] 3D reconstruction and rendering visualization of tunnel point cloud
    Zhao, Haozheng
    Hu, Qingwu
    14TH GEOINFORMATION FOR DISASTER MANAGEMENT, GI4DM 2022, VOL. 48-3, 2022, : 93 - 101
  • [48] A learning based 3D reconstruction method for point cloud
    Guo Qi
    Li Jinhui
    2020 IEEE INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, INTL CONF ON CLOUD AND BIG DATA COMPUTING, INTL CONF ON CYBER SCIENCE AND TECHNOLOGY CONGRESS (DASC/PICOM/CBDCOM/CYBERSCITECH), 2020, : 271 - 276
  • [49] 3D Point Cloud Aerotriangulation for Smart City Reconstruction
    Azri, Suhaibah
    Ujang, Uznir
    GIM INTERNATIONAL-THE WORLDWIDE MAGAZINE FOR GEOMATICS, 2021, 35 (07): : 10 - 13
  • [50] Point Cloud Merging for Complete 3D Surface Reconstruction
    Matiukas, V.
    Miniotas, D.
    ELEKTRONIKA IR ELEKTROTECHNIKA, 2011, (07) : 73 - 76