D-optimal designs for weighted polynomial regression

被引:2
|
作者
Fang, ZD [1 ]
机构
[1] Univ New Orleans, Dept Math, New Orleans, LA 70148 USA
关键词
approximate design; Descartes's rule of signs; equivalence theorem; weighted polynomial regression;
D O I
10.1016/S0167-7152(03)00084-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
By utilizing the equivalence theorem and Descartes's rule of signs, we construct D-optimal designs for a weighted polynomial regression model of degree k, with specific weight function w(x) = 1/(a(2) - x(2))(delta), on the compact interval [ - 1, 1]. The main result shows that in most cases, the number of support points of the D-optimal design is k + 1, while in other cases, the D-optimal design has k + 2 support points. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:205 / 213
页数:9
相关论文
共 50 条
  • [31] D-OPTIMAL DESIGNS FOR QUADRATIC REGRESSION ON A HYPERCUBE
    USIKOV, NV
    INDUSTRIAL LABORATORY, 1978, 44 (07): : 967 - 971
  • [32] D-optimal designs for polynomial regression with weight function x/(1+x)
    Imhof, L
    Krafft, O
    Schaefer, M
    STATISTICA SINICA, 1998, 8 (04) : 1271 - 1274
  • [33] D-Optimal Designs for Binary and Weighted Linear Regression Models: One Design Variable
    Gunduz, Necla
    Torsney, Bernard
    MATHEMATICS, 2023, 11 (09)
  • [34] Optimal designs for rational models and weighted polynomial regression
    Dette, H
    Haines, LM
    Imhof, L
    ANNALS OF STATISTICS, 1999, 27 (04): : 1272 - 1293
  • [35] E-OPTIMAL DESIGNS IN WEIGHTED POLYNOMIAL REGRESSION
    HEILIGERS, B
    ANNALS OF STATISTICS, 1994, 22 (02): : 917 - 929
  • [36] Bayesian D-Optimal Designs for Poisson Regression Models
    Zhang, Ying
    Ye, Keying
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (06) : 1234 - 1247
  • [37] D-optimal designs for combined linear and trigonometric regression
    Wu, HQ
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2003, 116 (01) : 177 - 184
  • [38] Bayesian D-optimal designs for exponential regression models
    Dette, H
    Neugebauer, HM
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1997, 60 (02) : 331 - 349
  • [39] Locally D-optimal designs for exponential regression models
    Dette, Holger
    Melas, Viatcheslav B.
    Wong, Weng Kee
    STATISTICA SINICA, 2006, 16 (03) : 789 - 803
  • [40] D-optimal designs for logistic regression in two variables
    Haines, Linda M.
    Kabera, Gaetan
    Ndlovu, Principal
    O'Brien, Timothy E.
    MODA 8 - ADVANCES IN MODEL-ORIENTED DESIGN AND ANALYSIS, 2007, : 91 - +