Finite topology minimal surfaces in homogeneous three-manifolds

被引:3
|
作者
Meeks, William H., III [1 ]
Perez, Joaquin [2 ,3 ]
机构
[1] Univ Massachusetts, Dept Math, Amherst, MA 01003 USA
[2] Univ Granada, Dept Geometry & Topol, E-18071 Granada, Spain
[3] Univ Granada, Inst Math IEMath GR, E-18071 Granada, Spain
关键词
Minimal surface; Stability; Minimal lamination; Minimal parking garage structure; Injectivity radius; LAMINATION; CURVATURE;
D O I
10.1016/j.aim.2017.03.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that any complete, embedded minimal surface M with finite topology in a homogeneous three-manifold N has positive infectivity radius. When one relaxes the condition that N be homogeneous to that of being locally homogeneous, then we show that the closure of M has the structure of a minimal lamination of N. As an application of this general result we prove that any complete, embedded minimal surface with finite genus and a countable number of ends is compact when the ambient space is S-3 equipped with a homogeneous metric of nonnegative scalar curvature. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:185 / 197
页数:13
相关论文
共 50 条
  • [21] An algorithm for finding planar surfaces in three-manifolds
    Sbrodova E.A.
    Journal of Mathematical Sciences, 2007, 144 (5) : 4500 - 4503
  • [22] Ricci Solitons on Homogeneous Almost α-Cosymplectic Three-Manifolds
    Li, Jin
    Liu, Ximin
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (01)
  • [23] Rotational symmetry of Weingarten spheres in homogeneous three-manifolds
    Galvez, Jose A.
    Mira, Pablo
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2021, 773 : 21 - 66
  • [24] Constant mean curvature spheres in homogeneous three-manifolds
    Meeks, William H., III
    Mira, Pablo
    Perez, Joaquin
    Ros, Antonio
    INVENTIONES MATHEMATICAE, 2021, 224 (01) : 147 - 244
  • [25] Isoperimetric domains of large volume in homogeneous three-manifolds
    Meeks, William H., III
    Mira, Pablo
    Perez, Joaquin
    Ros, Antonio
    ADVANCES IN MATHEMATICS, 2014, 264 : 546 - 592
  • [26] Constant mean curvature spheres in homogeneous three-manifolds
    William H. Meeks
    Pablo Mira
    Joaquín Pérez
    Antonio Ros
    Inventiones mathematicae, 2021, 224 : 147 - 244
  • [27] SMOOTHING FINITE GROUP ACTIONS ON THREE-MANIFOLDS
    Pardon, John
    DUKE MATHEMATICAL JOURNAL, 2021, 170 (06) : 1043 - 1084
  • [28] Asymptotically flat three-manifolds contain minimal planes
    Chodosh, Otis
    Ketover, Daniel
    ADVANCES IN MATHEMATICS, 2018, 337 : 171 - 192
  • [29] FREE BOUNDARY MINIMAL ANNULI IN CONVEX THREE-MANIFOLDS
    Maximo, Davi
    Nunes, Ivaldo
    Smith, Graham
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2017, 106 (01) : 139 - 186
  • [30] Einstein-Like Curvature Homogeneous Lorentzian Three-Manifolds
    Calvaruso, Giovanni
    RESULTS IN MATHEMATICS, 2009, 55 (3-4) : 295 - 310