Analyzing time complexity of parallel algorithms for knapsack problem

被引:0
|
作者
Padmavathi, S. [1 ]
Shalinie, S. Mercy [1 ]
机构
[1] Thaigarajar Coll Engn, Dept Comp Sci & Engn, Madurai 15, Tamil Nadu, India
关键词
parallel algorithm; approximation algorithm; dynamic programming; polynomial time;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we have analyzed various parallel algorithms for solving knapsack problem and proposed an efficient approach for solving knapsack problem using an approximation algorithm. We also discussed the time complexity of different algorithm. Backtracking is not discussed here due to it's inherent sequential property. The validity of the proposed algorithm is demonstrated on a worked out example and it shows the superiority of the proposed algorithm.
引用
收藏
页码:218 / +
页数:2
相关论文
共 50 条
  • [41] Improved approximation algorithms for a bilevel knapsack problem
    Qiu, Xian
    Kern, Walter
    THEORETICAL COMPUTER SCIENCE, 2015, 595 : 120 - 129
  • [42] Formulations and algorithms for the recoverable -robust knapsack problem
    Buesing, Christina
    Goderbauer, Sebastian
    Koster, Arie M. C. A.
    Kutschka, Manuel
    EURO JOURNAL ON COMPUTATIONAL OPTIMIZATION, 2019, 7 (01) : 15 - 45
  • [43] Heuristic and reduction algorithms for the knapsack sharing problem
    Yamada, T
    Futakawa, M
    COMPUTERS & OPERATIONS RESEARCH, 1997, 24 (10) : 961 - 967
  • [44] Heuristic algorithms for the cardinality constrained knapsack problem
    Pienkosz, Krzysztof
    PRZEGLAD ELEKTROTECHNICZNY, 2008, 84 (09): : 89 - 92
  • [45] Improved Approximation Algorithms for a Bilevel Knapsack Problem
    Qiu, Xian
    Kern, Walter
    COMPUTING AND COMBINATORICS, COCOON 2014, 2014, 8591 : 312 - 323
  • [46] HEURISTIC ALGORITHMS FOR THE MULTIPLE KNAPSACK-PROBLEM
    MARTELLO, S
    TOTH, P
    COMPUTING, 1981, 27 (02) : 93 - 112
  • [47] APPROXIMATE ALGORITHMS FOR 0/1 KNAPSACK PROBLEM
    SAHNI, S
    JOURNAL OF THE ACM, 1975, 22 (01) : 115 - 124
  • [48] Approximation algorithms for the generalized incremental knapsack problem
    Yuri Faenza
    Danny Segev
    Lingyi Zhang
    Mathematical Programming, 2023, 198 : 27 - 83
  • [49] Evolution of new algorithms for the binary knapsack problem
    Parada, Lucas
    Herrera, Carlos
    Sepulveda, Mauricio
    Parada, Victor
    NATURAL COMPUTING, 2016, 15 (01) : 181 - 193
  • [50] Exact Parallel Algorithm for the Knapsack Sharing Problem
    Mhalla, Hedi
    Laalaoui, Yacine
    INTERNATIONAL CONFERENCE ON ELECTRICAL, COMPUTER AND ENERGY TECHNOLOGIES (ICECET 2021), 2021, : 2236 - 2240