On maximal product sets of random sets

被引:4
|
作者
Mastrostefano, Daniele [1 ]
机构
[1] Univ Warwick, Math Inst, Zeeman Bldg, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
Product sets; Random models; Localised divisor functions; Distribution of the number of prime factors;
D O I
10.1016/j.jnt.2021.01.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For every positive integer Nand every alpha is an element of[0, 1), let B(N, alpha) denote the probabilistic model in which a random set A subset of {1, ... , N} is constructed by choosing independently every element of {1, ... , N} with probability alpha. We prove that, as N -> +infinity, for every Ain B(N, alpha) we have vertical bar AA vertical bar similar to vertical bar A vertical bar(2)/2 with probability 1 - o(1), if and only if log(alpha(2)(log N)(log 4-1))/root log log N -> -infinity. This improves on a theorem of Cilleruelo, Ramana and Ramare, who proved the above asymptotic between vertical bar AA vertical bar and vertical bar A vertical bar(2)/2when alpha = o(1/root log N), and supplies a complete characterization of maximal product sets of random sets. (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:13 / 40
页数:28
相关论文
共 50 条
  • [41] Random optimization on random sets
    Lepinette, Emmanuel
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2020, 91 (01) : 159 - 173
  • [42] MAXIMAL SETS OF DISPERSED VECTORS
    不详
    AMERICAN MATHEMATICAL MONTHLY, 1989, 96 (10): : 939 - 940
  • [43] MAXIMAL (K, T)-SETS
    GULATI, BR
    ANNALS OF MATHEMATICAL STATISTICS, 1971, 42 (06): : 2199 - &
  • [44] SPLINES WITH MAXIMAL ZERO SETS
    MELKMAN, AA
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1977, 61 (03) : 739 - 751
  • [45] MAXIMAL METRICALLY REGULAR SETS
    Oblaukhov, Alexey Konstantinovich
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2018, 15 : 1842 - 1849
  • [46] ENUMERATION MAXIMAL RE SETS
    CASE, J
    JOURNAL OF SYMBOLIC LOGIC, 1974, 39 (02) : 396 - 396
  • [47] Maximal resolving sets in a graph
    Swaminathan, V.
    Sundareswaran, R.
    INTERNATIONAL JOURNAL OF MATHEMATICS FOR INDUSTRY, 2024,
  • [48] Stability for maximal independent sets
    Kahn, Jeff
    Park, Jinyoung
    ELECTRONIC JOURNAL OF COMBINATORICS, 2020, 27 (01):
  • [49] ON INTERSECTION OF MAXIMAL LN SETS
    SPARKS, AG
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (02): : 421 - &
  • [50] ON MAXIMAL ANTIHIERARCHIC SETS OF INTEGERS
    SANDER, JW
    DISCRETE MATHEMATICS, 1993, 113 (1-3) : 179 - 189