On maximal product sets of random sets

被引:4
|
作者
Mastrostefano, Daniele [1 ]
机构
[1] Univ Warwick, Math Inst, Zeeman Bldg, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
Product sets; Random models; Localised divisor functions; Distribution of the number of prime factors;
D O I
10.1016/j.jnt.2021.01.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For every positive integer Nand every alpha is an element of[0, 1), let B(N, alpha) denote the probabilistic model in which a random set A subset of {1, ... , N} is constructed by choosing independently every element of {1, ... , N} with probability alpha. We prove that, as N -> +infinity, for every Ain B(N, alpha) we have vertical bar AA vertical bar similar to vertical bar A vertical bar(2)/2 with probability 1 - o(1), if and only if log(alpha(2)(log N)(log 4-1))/root log log N -> -infinity. This improves on a theorem of Cilleruelo, Ramana and Ramare, who proved the above asymptotic between vertical bar AA vertical bar and vertical bar A vertical bar(2)/2when alpha = o(1/root log N), and supplies a complete characterization of maximal product sets of random sets. (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:13 / 40
页数:28
相关论文
共 50 条
  • [1] A NOTE ON PRODUCT SETS OF RANDOM SETS
    Sanna, C.
    ACTA MATHEMATICA HUNGARICA, 2020, 162 (01) : 76 - 83
  • [2] A note on product sets of random sets
    C. Sanna
    Acta Mathematica Hungarica, 2020, 162 : 76 - 83
  • [3] Maximal and Convex Layers of Random Point Sets
    He, Meng
    Nguyen, Cuong P.
    Zeh, Norbert
    LATIN 2018: THEORETICAL INFORMATICS, 2018, 10807 : 597 - 610
  • [4] Product Sets and Distance Sets of Random Point Sets in Vector Spaces Over Finite Rings
    Le Anh Vinh
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2013, 62 (03) : 911 - 926
  • [5] Intersections of Zipf random sets: Maximal weighted relevance
    Lifshts, M. A.
    Lialinov, I. M.
    STATISTICS & PROBABILITY LETTERS, 2024, 208
  • [6] EMBEDDING MAXIMAL CLIQUES OF SETS IN MAXIMAL CLIQUES OF BIGGER SETS
    DRAKE, DA
    DISCRETE MATHEMATICS, 1986, 58 (03) : 229 - 242
  • [7] Ratio sets of random sets
    Javier Cilleruelo
    Jorge Guijarro-Ordóñez
    The Ramanujan Journal, 2017, 43 : 327 - 345
  • [8] Ratio sets of random sets
    Cilleruelo, Javier
    Guijarro-Ordonez, Jorge
    RAMANUJAN JOURNAL, 2017, 43 (02): : 327 - 345
  • [9] The Maximal Density of Product-Free Sets in Z/nZ
    Kurlberg, Par
    Lagarias, Jeffrey C.
    Pomerance, Carl
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2013, 2013 (04) : 827 - 845
  • [10] A CONSONANT APPROXIMATION OF THE PRODUCT OF INDEPENDENT CONSONANT RANDOM SETS
    Destercke, Sebastien
    Dubois, Didier
    Chojnacki, Eric
    INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2009, 17 (06) : 773 - 792