Local Well-Posedness and Break-Down Criterion of the Incompressible Euler Equations with Free Boundary

被引:4
|
作者
Wang, Chao
Zhang, Zhifei
Zhao, Weiren
Zheng, Yunrui
机构
关键词
2-DIMENSIONAL WATER-WAVES; SURFACE-TENSION LIMIT; GLOBAL-SOLUTIONS; SOBOLEV SPACES; SINGULARITIES; MOTION;
D O I
10.1090/memo/1318
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove the local well-posedness of the free boundary problem for the incompressible Euler equations in low regularity Sobolev spaces, in which the velocity is a Lipschitz function and the free surface belongs to C3/2 + epsilon. Moreover, we also present a Beale-Kato-Majda type break-down criterion of smooth solution in terms of the mean curvature of the free surface, the gradient of the velocity and Taylor sign condition.
引用
收藏
页码:1 / +
页数:120
相关论文
共 50 条